1
|
Meng Z, Yan J, Ning C, Shi M, Wei Y. Construction of pyrroles, furans and thiophenes via intramolecular cascade desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes induced by NXS (X = I or Br). Chem Sci 2023; 14:7648-7655. [PMID: 37476717 PMCID: PMC10355115 DOI: 10.1039/d3sc01542d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Pyrroles, furans, and thiophenes are important structural motifs in biologically active substances, pharmaceuticals and functional materials. In this paper, we disclose an efficient synthetic strategy for the rapid construction of multisubstituted pyrroles, furans, and thiophenes via NXS mediated desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes (VDCPs). The advantages of this method include wide substrate range, high efficiency and synthetic usefulness of the heterocyclic products under metal-free and mild conditions. The derivatization of pyrrole products and the preparation of functional molecules successfully demonstrated the synthetic potential of the products as platform molecules. The reaction mechanism has been investigated on the basis of control experiments and DFT calculations.
Collapse
Affiliation(s)
- Zhe Meng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jun Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chao Ning
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
2
|
Xu L, Ma Z, Hu X, Zhang X, Gao S, Liang D, Wang B, Li W, Li Y. Electroreductive synthesis of polyfunctionalized pyridin-2-ones from acetoacetanilides and carbon disulfide with oxygen evolution. Org Biomol Chem 2022; 20:1013-1018. [PMID: 35043137 DOI: 10.1039/d1ob02379a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chemical reductant or a sacrificial electron donor is required in any reduction reactions, generally resulting in undesired chemical waste. Herein, we report a reductant-free reductive [3 + 2 + 1] annulation of β-keto amides with CS2 enabled by the synergy of electro/copper/base using water as an innocuous anodic sacrifice with O2 as a sustainable by-product. This electrochemical protocol is mild and provides access to polyfunctionalized pyridin-2-ones from simple starting materials in a single step.
Collapse
Affiliation(s)
- Lichun Xu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Zhongxiao Ma
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Xi Hu
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Baoling Wang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Weili Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China.
| |
Collapse
|
3
|
Zheng B, Li X, Song Y, Meng S, Li Y, Liu Q, Pan L. Visible-Light-Induced Formation of Thiavinyl 1,3-Dipoles: A Metal-Free [3+2] Oxidative Cyclization with Alkynes as Easy Access to Thiophenes. Org Lett 2021; 23:3453-3459. [PMID: 33881879 DOI: 10.1021/acs.orglett.1c00915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A visible-light-induced [3+2] oxidative cyclization of various alkynes with easily available ketene dithioacetals as the previously unknown thiavinyl 1,3-dipoles in the presence of an acridine photosensitizer is reported. A series of multisubstituted thiophenes were achieved regioselectively in ≤98% yields under very mild metal-free conditions without other additives. This reaction could tolerate a wide range of substrates and achieve good efficiency in large-scale syntheses. The reaction mechanism and their applications are described in detail to reveal the reactivity of the new 1,3-dipoles and the selectivity of the reactions.
Collapse
Affiliation(s)
- Baihui Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaotong Li
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yang Song
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shuyang Meng
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|