1
|
Qiu YF, Wang Q, Cao JH, Xue DQ, Li M, Quan ZJ, Wang XC, Liang YM. Selective Synthesis of Mono- and Bis-Phosphorylated (Dihydro)pyrans via TMSCl-Mediated Cascade Phosphorylation Cycloisomerization of Enynones. Org Lett 2024; 26:8636-8642. [PMID: 39326000 DOI: 10.1021/acs.orglett.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2H-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Qian Xue
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Karmakar I, Brahmachari G. Electrorearranged Difunctionalization of 4-Hydroxy-α-benzopyrones. J Org Chem 2024; 89:10524-10537. [PMID: 39028998 DOI: 10.1021/acs.joc.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We herein report the exploration of an electrosynthetic strategy as a highly efficient and straightforward alternative protocol for accessing diversely substituted and biologically promising alkyl 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylates through an electrorearranged difunctionalization of 4-hydroxycoumarins, involving the singlet oxygen insertion from molecular oxygen, at ambient temperature. The present method is notably more advantageous than the previously reported photochemical conversion regarding yields and reaction times, substrate scope and functional group tolerability, operational simplicity, and scalability.
Collapse
Affiliation(s)
- Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
3
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
4
|
Cai B, Cui Y, Zhou J, Wang YB, Yang L, Tan B, Wang JJ. Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styrene-Phosphines. Angew Chem Int Ed Engl 2023; 62:e202215820. [PMID: 36424372 DOI: 10.1002/anie.202215820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
A Cu/CPA co-catalytic system has been developed for achieving the direct hydrophosphinylation of alkynes with phosphine oxides in delivering novel axially chiral phosphorus-containing alkenes in high yields and excellent enantioselectivities (up to 99 % yield and 99 % ee). DFT calculations were performed to elucidate the reaction pathway and the origin of enantiocontrol. This streamlined and modular methodology establishes a new platform for the design and application of new axially chiral styrene-phosphine ligands.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan Cui
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Zhou
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Joelle Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
5
|
Li Y, Zhang S, Ma Q, Ding H, Sun Z, Yuan Y, Jia X. SbCl3 Initiated Aerobic Phosphorylation of sp3 C-H Bond: A Facile Approach to α-Phosphorylated Tetrahydroisoquinolines. Chem Asian J 2022; 17:e202200656. [PMID: 35946091 DOI: 10.1002/asia.202200656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
An aerobic phosphorylation of N-aryltetrahydroisoquinolines was realized by SbCl 3 initiated sp 3 C-H bond functionalization, providing a series of α-aminophosphonates in high yields. This work reveals that SbCl 3 /O 2 is an efficient and facile catalyst system to enable the aerobic C-H functionalization, and antimony containing reagents might be potentially applied to more general transformations.
Collapse
Affiliation(s)
- Yuemei Li
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Shuwei Zhang
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Qiyuan Ma
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Han Ding
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Zheng Sun
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Yu Yuan
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Xiaodong Jia
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, CHINA
| |
Collapse
|
6
|
Beukeaw D, Rattanasupaponsak N, Kittikool T, Phakdeeyothin K, Phomphrai K, Yotphan S. Metal‐Free Site‐Selective Direct Oxidative Phosphorylation of Pyrazolones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Mandal M, Brahmachari G. Visible-Light-Promoted Intramolecular C-O Bond Formation via C sp3-H Functionalization: A Straightforward Synthetic Route to Biorelevant Dihydrofuro[3,2- c]chromenone Derivatives. J Org Chem 2022; 87:4777-4787. [PMID: 35300495 DOI: 10.1021/acs.joc.2c00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A photochemical method for the synthesis of functionalized dihydrofuro[3,2-c]chromenones via intramolecular Csp3-H cross-dehydrogenative oxygenation within a warfarin framework has been unearthed. Advantages of this protocol include abundant sunlight or low-energy visible light as the energy source, mild reaction conditions, and avoidance of metal catalysts.
Collapse
Affiliation(s)
- Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, West Bengal 731 235, India
| |
Collapse
|
8
|
A Selective Luminescent Probe to Monitor Cellular ATP: Potential Application for in vivo Imaging in Zebrafish Embryo. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Mandal M, Karmakar I, Chakrabarty K, Das GK, Brahmachari G. Metal‐Free Sequential Amidation and Intramolecular C
sp2
−H Direct Amination of Coumarin‐3‐carboxylic Acids under Ambient Conditions: Scope and Mechanistic Insights. ChemistrySelect 2022. [DOI: 10.1002/slct.202103929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mullicka Mandal
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Indrajit Karmakar
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Kuheli Chakrabarty
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Gourab Kanti Das
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| | - Goutam Brahmachari
- Department of Chemistry Visva-Bharati (a Central University) Santiniketan 731 235 West Bengal India
| |
Collapse
|
10
|
Brahmachari G, Karmakar I. Visible Light‐Driven and Singlet Oxygen‐Mediated Synthesis of 2‐Hydroxyphenylated‐α‐Ketoamides Through Decarboxylative Amidation of 4‐Hydroxycoumarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Goutam Brahmachari
- Visva-Bharati University, Santiniketan-731 235, WestBengal, India Chemistry Siksha Bhavana Street 731 235 Santiniketan INDIA
| | - Indrajit Karmakar
- Visva-Bharati University: Visva-Bharati Chemistry 731235 Santiniketan INDIA
| |
Collapse
|
11
|
Chen Z, Sun J, Ke Z, Huang X, Li Z. Silver-catalyzed stereoselective C-4 arylthiodifluoromethylation of coumarin-3-carboxylic acids via a double decarboxylative strategy. Org Chem Front 2022. [DOI: 10.1039/d1qo01609a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile silver-catalyzed dual decarboxylation of arylthio-difluoroacetic acid with coumarin-3-carboxylic acids/chromone-3-carboxylic acids was developed.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
12
|
Nayek N, Karmakar P, Mandal M, Karmakar I, Brahmachari G. Photochemical and electrochemical regioselective cross-dehydrogenative C(sp 2)–H sulfenylation and selenylation of substituted benzo[ a]phenazin-5-ols. NEW J CHEM 2022. [DOI: 10.1039/d2nj02224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The essence of photo- and electrochemistry: sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols through cross-dehydrogenative C(sp2)–H functionalization.
Collapse
Affiliation(s)
- Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
13
|
Brahmachari G, Begam S, Karmakar I, Gupta VK. Development of a straightforward and efficient protocol for the one-pot multicomponent synthesis of substituted alpha-aminoallylphosphonates under catalyst-free condition. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1920593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, India
| | - Vivek K Gupta
- Department of Physics, University of Jammu, Jammu-Tawi, India
| |
Collapse
|
14
|
Brahmachari G, Bhowmick A, Karmakar I. Visible Light-Driven and Singlet Oxygen-Mediated Photochemical Cross-Dehydrogenative C 3-H Sulfenylation of 4-Hydroxycoumarins with Thiols Using Rose Bengal as a Photosensitizer. J Org Chem 2021; 86:9658-9669. [PMID: 34213909 DOI: 10.1021/acs.joc.1c00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible light (white light-emitting diode/direct sunlight)-driven photochemical synthesis of a new series of biologically interesting 3-(alkyl/benzylthio)-4-hydroxy-2H-chromen-2-ones has been achieved through a cross-dehydrogenative C3-H sulfenylation of 4-hydroxycoumarins with thiols at ambient temperature in the presence of rose bengal in acetonitrile under an oxygen atmosphere. The notable features of this newly developed method are mild reaction conditions, energy efficiency, metal-free synthesis, good to excellent yields, use of low-cost materials, and eco-friendliness.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Anindita Bhowmick
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|
15
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|