1
|
Andatsu H, Terashima Y, Kawamura R, Matsuda Y, Takehara T, Suzuki T, Yasukawa N, Nakamura S. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of 2,2-Disubstituted 2,3-Dihydro-4-quinolones from Isatins and 2'-Aminoacetophenones. Org Lett 2024. [PMID: 39718907 DOI: 10.1021/acs.orglett.4c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an in situ generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee. Detailed density functional theory (DFT) calculations support the proposed reaction mechanism and the origin of asymmetric induction.
Collapse
Affiliation(s)
- Hidenori Andatsu
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yuto Terashima
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Rio Kawamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Naoki Yasukawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Faragó T, Mészáros R, Wéber E, Palkó M. Synthesis and Docking Studies of Novel Spiro[5,8-methanoquinazoline-2,3'-indoline]-2',4-dione Derivatives. Molecules 2024; 29:5112. [PMID: 39519753 PMCID: PMC11547464 DOI: 10.3390/molecules29215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, a set of spiro[5,8-methanoquinazoline-2,3'-indoline]-2',4-dione derivatives 3a-p were synthesized starting from unsubstituted and N-methyl-substituted diendo- and diexo-2-aminonorbornene carboxamides, as well as various substituted isatins. The typical method involves a condensation reaction of alicyclic aminocarboxamide and isatin in the presence of a catalyst, using a solvent and an acceptable temperature. We developed a cost-effective and ecologically benign high-speed ball milling (HSBM), microwave irradiation (MW), and continuous flow (CF) technique to synthesize spiroquinazolinone molecule 3a. The structures of the synthesized compounds 3a-p were determined using 1D and 2D NMR spectroscopies. Furthermore, docking studies and absorption, distribution, metabolism, and toxicity (ADMET) predictions were used in this work. In agreement with the corresponding features found in the case of both the SARS-CoV-2 main protease (RCSB Protein Data Bank: 6LU7) and human mast cell tryptase (RCSB Protein Data Bank: 2ZA5) based on the estimated total energy and binding affinity, H bonds, and hydrophobicity in silico, compound 3d among our 3a-g, 3i-k, and 3m derivatives was found to be our top-rated compound.
Collapse
Affiliation(s)
- Tünde Faragó
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| | - Rebeka Mészáros
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| | - Edit Wéber
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720 Szeged, Hungary
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, Interdisciplinary Excellence Center, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; (T.F.); (R.M.)
| |
Collapse
|
3
|
Tsai ZN, Li LY, Paculba AS, Miñoza S, Tsao YT, Lin PS, Liao HH. Pro-aromatic Dihydroquinazolinones - From Multigram Synthesis to Reagents for Gram-scale Metallaphotoredox Reactions. Chem Asian J 2023:e202301004. [PMID: 38102804 DOI: 10.1002/asia.202301004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Dihydroquinazolinone (DHQZ) has recently been harnessed as a ketone-derived pro-aromatic reagent extensively employed in (metalla)photoredox reactions as versatile group transfer agents. In this work, we outline a column chromatography-free protocol for the multigram-scale synthesis of pro-aromatic DHQZs as well as its use in a gram-scale nickel/photoredox dual-catalyzed cross-coupling in single-batch, photoflow, and simultaneous multiple smaller batches. While the single-batch approach leveraged moderate yields, a simple plug-flow photoreactor also exhibited amenable productivity (up to 45 % yield) despite the use of a heterogeneous base. Meanwhile, performing the metallaphotoredox-catalyzed reaction in multiple smaller batches in an improvised photoreactor facilitated high yields of up to 59 % and good reproducibility, implying a convenient alternative in the absence of photoflow setups.
Collapse
Affiliation(s)
- Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Li-Yun Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Aira Shayne Paculba
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Yong-Ting Tsao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Pei-Shan Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
- Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| |
Collapse
|
4
|
Nakamura S, Kibe M, Takehara T, Suzuki T. Direct Catalytic Enantioselective Reaction of α-Isocyanoacetonitriles with Ketimines Using Cinchona Alkaloid Amide-Cu(II) Catalysts. Org Lett 2023; 25:1040-1044. [PMID: 36749377 DOI: 10.1021/acs.orglett.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first enantioselective reaction of α-isocyanoacetonitriles was developed. The reaction of various α-isocyanoacetonitriles with ketimines using cinchona alkaloid amide-Cu(II) catalysts afforded imidazolines with consecutive tetrasubstituted stereogenic carbon centers in good yields and high diastereo- and enantioselectivities. The stereoselectivity of the reaction is explained on the basis of the control experiment and density functional theory (DFT) calculations. The products were subsequently converted into chiral compounds. This process highlights the possible use of α-isocyanoacetonitriles for asymmetric and organic syntheses.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Masato Kibe
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
5
|
Mishra P, Shruti I, Kant R, Thakur TS, Kumar A, Rastogi N. Visible Light Organo‐Photocatalytic Synthesis of 3‐Imidazolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Poornima Mishra
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ipsha Shruti
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Tejender S. Thakur
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Akhilesh Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
6
|
Ogura K, Isozumi I, Takehara T, Suzuki T, Nakamura S. Enantioselective Reaction of N-Unprotected Activated Ketimines with Phosphine Oxides Catalyzed by Chiral Imidazoline-Phosphoric Acids. Org Lett 2022; 24:8088-8092. [DOI: 10.1021/acs.orglett.2c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuki Ogura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Itsuki Isozumi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
7
|
Egorov IN, Santra S, Zyryanov GV, Majee A, Hajra A, Chupakhin ON. Direct Asymmetric Addition of Heteroatom Nucleophiles to Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya N. Egorov
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University Mira St. 19 Ekaterinburg 620002 Russian Federation
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University Mira St. 19 Ekaterinburg 620002 Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University Mira St. 19 Ekaterinburg 620002 Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Division) 22/20, S. Kovalevskoy/Akademicheskaya St. 620990 Yekaterinburg Russian Federation
| | - Adinath Majee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry Chemical Engineering Institute Ural Federal University Mira St. 19 Ekaterinburg 620002 Russian Federation
- Postovsky Institute of Organic Synthesis of RAS (Ural Division) 22/20, S. Kovalevskoy/Akademicheskaya St. 620990 Yekaterinburg Russian Federation
| |
Collapse
|
8
|
Nakamura S, Matsuda Y, Takehara T, Suzuki T. Enantioselective Pictet-Spengler Reaction of Acyclic α-Ketoesters Using Chiral Imidazoline-Phosphoric Acid Catalysts. Org Lett 2022; 24:1072-1076. [PMID: 35080408 DOI: 10.1021/acs.orglett.1c04316] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enantioselective Pictet-Spengler reaction of acyclic α-ketoesters with tryptamines has been developed. Excellent yields and enantioselectivity were obtained for the reaction using chiral imidazoline-phosphoric acid catalysts. Density functional theory calculations suggested possible transition states that explain the origin of chiral induction. This process provides an efficient route for the synthesis of tetrahydro-β-carboline derivatives.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yoichiro Matsuda
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
9
|
More RR, Kadam AB, Humne VT, Junne SB. Iodine‐mediated expedient synthesis of sulfur‐nitrogen containing heteroaminals under acidic condition. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Archana B. Kadam
- P. G. Department of Chemistry Yeshwant Mahavidyalala Nanded India
| | - Vivek T. Humne
- Department of Chemistry Shri R. R. Lahoti Science College Morshi India
| | - Subhash B. Junne
- P. G. Department of Chemistry Yeshwant Mahavidyalala Nanded India
| |
Collapse
|
10
|
Shikari A, Mandal K, Chopra D, Pan SC. Organocatalytic Asymmetric Synthesis of Cyclic Acetals with Spirooxindole Skeleton. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Amit Shikari
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| | - Koushik Mandal
- Department of Chemistry Indian Institute of Science Education and Research Bhopal 462066 India
| | - Deepak Chopra
- Department of Chemistry Indian Institute of Science Education and Research Bhopal 462066 India
| | - Subhas Chandra Pan
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
11
|
Dai L, Zhu Q, Zeng J, Liu Y, Zhong G, Han X, Zeng X. Asymmetric synthesis of chiral imidazolidines by merging copper and visible light-induced photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light induced copper catalyzed synthesis of decarboxylative radical coupling/cyclization reaction for the synthesis of chiral imidazolidines in high yields and enantioselectivities was reported.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoyu Han
- Zhejiang Provincial Key Laboratory for Chemical & Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Liu S, Wang J, Wei Z, Cao J, Liang D, Lin Y, Duan H. An L-tert-leucine derived urea catalyzed asymmetric synthesis of acylclic N, N′-ketals derived from aryl amines and isatin-derived ketimines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Nakamura S, Matsumoto N, Kibe M, Abe K, Takehara T, Suzuki T. Enantiodivergent Reaction of Ketimines with Malononitriles Using Single Cinchona Alkaloid Sulfonamide Catalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuichi Nakamura
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Natsuki Matsumoto
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Masato Kibe
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Kazuki Abe
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research Osaka University 8–1 Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research Osaka University 8–1 Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| |
Collapse
|
15
|
Lin X, Ge K, He N, Chen X, Li P, Dong M, Li W. Organocatalytic Enantioselective Construction of Acyclic
N
,
N
‐Acetals via Aza‐Addition of Arylamines to Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiao Lin
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University, Qingdao Shandong 266021 People's Republic of China
| | - Keli Ge
- School of Basic Medicine Qingdao University, Qingdao Shandong 266021 People's Republic of China
| | - Ningning He
- School of Basic Medicine Qingdao University, Qingdao Shandong 266021 People's Republic of China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology (SUSTech) Shenzhen 518055 People's Republic of China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology (SUSTech) Shenzhen 518055 People's Republic of China
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University, Qingdao Shandong 266021 People's Republic of China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University, Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|
16
|
Ogura K, Takehara T, Suzuki T, Nakamura S. Enantioselective Vinylogous Mannich Reaction of Acyclic Vinylketene Silyl Acetals with Acyclic Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kazuki Ogura
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tsunayoshi Takehara
- The Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research Osaka University 8-1 Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science Nagoya Institute of Technology, Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
17
|
Fujita K, Miura M, Funahashi Y, Hatanaka T, Nakamura S. Enantioselective Reaction of 2 H-Azirines with Oxazol-5-(4 H)-ones Catalyzed by Cinchona Alkaloid Sulfonamide Catalysts. Org Lett 2021; 23:2104-2108. [PMID: 33650878 DOI: 10.1021/acs.orglett.1c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective reaction of 2H-azirines with oxazol-5-(4H)-ones (oxazolones) using a cinchona alkaloid sulfonamide catalyst has been developed. The reaction proceeded at the C-2 position of oxazolones to afford products with consecutive tetrasubstituted stereogenic centers in high yield with high diastereo- and enantioselectivity. The obtained aziridines were converted into various chiral compounds without loss of enantiopurity.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Masataka Miura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|