1
|
Rama Kishore Putta VP, Polina S, Gujjarappa R, Kishore PS, Malakar CC, Pujar PP. Synthesis of 4 H-3,1-Benzothiazin-4-Ones via C-N/C-S Bond Forming Reactions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2136220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Saibabu Polina
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, India
| | - Raghuram Gujjarappa
- Department of Chemistry, National Institute of Technology Manipur, Langol, India
| | | | - Chandi C. Malakar
- Department of Chemistry, National Institute of Technology Manipur, Langol, India
| | | |
Collapse
|
2
|
Yu C, Ke F, Su J, Ma X, Li X, Song Q. Cu-Catalyzed Three-Component Cascade Synthesis of 1,3-Benzothiazines from ortho-Aminohydrazones and Bromodifluoroacetamides. Org Lett 2022; 24:7861-7865. [PMID: 36239477 DOI: 10.1021/acs.orglett.2c03399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient synthesis of benzo[d][1,3]thiazine has been developed by employing a copper-catalyzed transformation of readily available ketone-derived hydrazones with elemental sulfur and bromodifluoroalkylative reagents. The strategy involves an S8-catalyzed selective triple-cleavage of bromodifluoroacetamides, which acts as a C1 synthon at the 2-position of benzo[d][1,3]thiazine. A mechanism proceeding through a Cu-carbene intermediate is proposed for the C-S bond formation.
Collapse
Affiliation(s)
- Changjiang Yu
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Fumei Ke
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
3
|
Zhao L, Yang ML, Liu M, Ding MW. New efficient synthesis of polysubstituted 3,4-dihydroquinazolines and 4 H-3,1-benzothiazines through a Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution sequence. Beilstein J Org Chem 2022; 18:286-292. [PMID: 35330780 PMCID: PMC8919415 DOI: 10.3762/bjoc.18.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022] Open
Abstract
A new efficient synthesis of polysubstituted 3,4-dihydroquinazolines and 4H-3,1-benzothiazines via sequential Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution reaction has been developed. The three-component Passerini reactions of 2-azidobenzaldehydes 1, benzoic acid (2), and isocyanides 3 produced the azide intermediates 4, which were treated sequentially with triphenylphosphine, isocyanates (or CS2), and secondary amines to give polysubstituted 3,4-dihydroquinazolines 8 and 4H-3,1-benzothiazines 11 in good overall yields through consecutive Passerini/Staudinger/aza-Wittig/addition/nucleophilic substitution reactions.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| | - Mao-Lin Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| | - Min Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|