1
|
Gaikwad RP, Warkad IR, Chaudhari DS, Jiang S, Miller JT, Pham HN, Datye A, Gawande MB. Harnessing photocatalytic activity of mesoporous graphitic carbon nitride decorated by copper single-atom catalysts for oxidative dehydrogenation of N-heterocycles. J Colloid Interface Sci 2024; 676:485-495. [PMID: 39047376 DOI: 10.1016/j.jcis.2024.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
This work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-C3N4), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m2 g-1) and an average pore diameter (3.6 nm). A simple microwave-assisted preparation method was employed to decorate Cu single-atom over mpg-C3N4 support. The Cu single-atom decorated on mpg-C3N4 support (Cu@mpg-C3N4) is characterized by various characterization techniques, including XRD, UV-visible spectrophotometry, HRTEM, HAADF-STEM with elemental mapping, AC-STEM, ICP-OES, XANES, EXAFS, and BET surface area. These characterization studies confirmed that the Cu@mpg-C3N4 catalyst exhibited high surface area, mesoporous nature, medium band gap, and low metal loading. The as-synthesized and well-characterized Cu@mpg-C3N4 single-atom photocatalyst is then evaluated for its efficacy in converting N-heterocycles into corresponding N-heteroaromatic compounds with excellent conversion and selectivity (>99 %). This transformation is achieved using water as a green solvent and a 30 W white light as a visible light source, demonstrating the catalyst's potential for sustainable and environmentally benign reactions.
Collapse
Affiliation(s)
- Rahul P Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Jalna, Maharashtra 431203, India
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Jalna, Maharashtra 431203, India
| | - Dinesh S Chaudhari
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Jalna, Maharashtra 431203, India
| | - Shan Jiang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, IN 47906, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, IN 47906, United States
| | - Hien N Pham
- Department of Chemical Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, United States
| | - Abhaya Datye
- Department of Chemical Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131, United States
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Jalna, Maharashtra 431203, India; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VˇSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
| |
Collapse
|
2
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
3
|
Luo J, Li Z, He J, Li T, Wu D, Lai Y, Sun H. Efficient and scalable synthesis of 3,4-dihydroisoquinolin-1(2 H)-ones by benzylic oxidation of tetrahydroisoquinoline derivatives using cerium ammonium nitrate (CAN). Org Biomol Chem 2024; 22:4153-4156. [PMID: 38715475 DOI: 10.1039/d4ob00491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
An efficient and scalable method for the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones through benzylic oxidation of tetrahydroisoquinoline derivatives using a catalytic amount of cerium ammonium nitrate (CAN) and a stoichiometric amount of NaBrO3 as oxidants was developed. The reaction is significantly influenced by the substituent groups on the phenyl ring. While electron-withdrawing groups on the phenyl ring can lower the reactivities of the substrates, electron-donating groups on the phenyl ring can dramatically promote the oxidation rate.
Collapse
Affiliation(s)
- Jiajun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhilong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaxin He
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Tong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Daochen Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Yang Lai
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Nan J, Huang Q, Men X, Yang S, Wang J, Ma Y. Palladium-catalyzed denitrogenation/vinylation of benzotriazinones with vinylene carbonate. Chem Commun (Camb) 2024; 60:3571-3574. [PMID: 38469678 DOI: 10.1039/d4cc00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Herein, a novel Pd-catalyzed denitrogenation/vinylation of benzotriazinones using vinylene carbonate as the vinylation reagent is reported. This transformation demonstrates an unprecedented skeletal editing approach, effectively converting NN to CC fragments in situ and synthesizing a collection of isoquinolinones with broad-spectrum functional group tolerance. Moreover, the quite concise reaction system and late-stage modification of bioactive molecules comprehensively underscore the practical potential of this protocol.
Collapse
Affiliation(s)
- Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, China
| | - Qiong Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xinran Men
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuai Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
5
|
Liu C, Liu Y, Yang S, Zheng B, Zhang Y. Electrochemical Lactonization Enabled by Unusual Shono-Type Oxidation from Functionalized Benzoic Acids. Org Lett 2024; 26:1936-1940. [PMID: 38407049 DOI: 10.1021/acs.orglett.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A novel method for electrochemical lactonization via C(sp3)-H functionalization was developed. This metal- and oxidant-free strategy enabled the efficient synthesis of various lactones. Gram-scale reaction and derivatization of the lactone product demonstrated the synthetic utility of this methodology. Mechanistic studies using control experiments and CV curves elucidated the proposed intramolecular HAT and the oxidative cyclization pathway. An unusual Shono-type oxidation was realized through this electrochemical approach, proceeding without a traditional nucleophilic addition process.
Collapse
Affiliation(s)
- Chen Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yunge Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Shurui Yang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Bing Zheng
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
7
|
Neerathilingam N, Prabhu S, Anandhan R. A facile synthesis of phthalimides from o-phthalaldehyde and amines via tandem cyclocondensation and α-C-H oxidation by an electrochemical oxygen reduction reaction. Org Biomol Chem 2023; 21:7707-7711. [PMID: 37702002 DOI: 10.1039/d3ob01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Electrochemical synthesis of phthalimides from o-phthalaldehyde and amines via tandem cyclocondensation and α-C-H oxygenation of isoindolinone was achieved. The α-C-H oxidation proceeded with molecular oxygen via an oxygen reduction reaction (ORR) on the cathode under electrochemical conditions. The synthetic utility of this protocol was successfully demonstrated by employing gram-scale synthesis and obtaining bioactive molecules such as thalidomide and 2-(2,6-diisopropylphenyl)-5-hydroxyisoindoline-1,3-dione. Mechanistic studies and control experiments indicate that molecular oxygen provides oxygen atoms for the reaction.
Collapse
Affiliation(s)
| | - Sakthivel Prabhu
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India.
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India.
| |
Collapse
|
8
|
Bjerg EE, Marchán-García J, Buxaderas E, Moglie Y, Radivoy G. Oxidative α-Functionalization of 1,2,3,4-Tetrahydroisoquinolines Catalyzed by a Magnetically Recoverable Copper Nanocatalyst. Application in the Aza-Henry Reaction and the Synthesis of 3,4-Dihydroisoquinolones. J Org Chem 2022; 87:13480-13493. [PMID: 36154121 DOI: 10.1021/acs.joc.2c01782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative α-functionalization of 2-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) promoted by a versatile heterogeneous nanocatalyst consisting of copper nanoparticles immobilized on silica-coated maghemite (CuNPs/MagSilica) has been accomplished. The methodology was successfully applied in the cross-dehydrogenative coupling (CDC) reaction of N-aryl THIQs and other tertiary amines with nitromethane as a pro-nucleophile (aza-Henry reaction) and the α-oxidation of THIQs with O2 as a green oxidant. Phosphite, alkyne, or indole derivatives were also shown to be suitable candidates for their use as pro-nucleophiles in the CDC reaction with THIQs. The catalyst, with very low copper loading (0.4-1.0 mol % Cu), could be easily recovered by means of an external magnet and reused in four cycles without significant loss of activity.
Collapse
Affiliation(s)
- Esteban E Bjerg
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Joaquín Marchán-García
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Eduardo Buxaderas
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Yanina Moglie
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gabriel Radivoy
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
9
|
Xu F, Zhang F, Wang W, Yao M, Lin X, Yang F, Qian Y, Chen Z. Iron(III)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones. Org Biomol Chem 2022; 20:7031-7035. [PMID: 36018561 DOI: 10.1039/d2ob01199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-catalyzed oxidative synthesis of N-aryl-substituted tetrahydroisoquinolines (THIQs) toward tetrahydroisoquinoline-based derivatives is reported. A wide range of α-amino nitriles and tetrahydroisoquinolinones are synthesized in moderate to good yields. This approach involves a new organic nitrile source, a cheap iron catalyst under an oxygen atmosphere, and temperature-controlled divergent synthesis and features complete selectivity and operational simplicity.
Collapse
Affiliation(s)
- Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fanglian Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Wenjia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Mingxu Yao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Xing Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fang Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Yiping Qian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Capel E, Luis-Barrera J, Sorazu A, Uria U, Prieto L, Reyes E, Carrillo L, Vicario JL. Transannular Approach to 2,3-Dihydropyrrolo[1,2- b]isoquinolin-5(1 H)-ones through Brønsted Acid-Catalyzed Amidohalogenation. J Org Chem 2022; 87:10062-10072. [PMID: 35880953 PMCID: PMC9361296 DOI: 10.1021/acs.joc.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A transannular approach has been developed for the construction
of pyrrolo[1,2-b]isoquinolinones starting from benzo-fused
nine-membered enelactams. This process takes place in the presence
of a halogenating agent and under Brønsted acid catalysis and
proceeds via a transannular amidohalogenation, followed by elimination.
The reaction has been found to be wide in scope, enabling the formation
of a variety of tricyclic products in good overall yield, regardless
of the substitution pattern in the initial lactam substrate. The reaction
has also been applied to the total synthesis of a reported topoisomerase
I inhibitor and to the formal synthesis of rosettacin. Further extension
of this methodology allows the preparation of 10-iodopyrrolo[1,2-b]isoquinolinones by using an excess of halogenating agent
and these compounds can be further manipulated through standard Suzuki
coupling chemistry into a variety of 10-aryl-substituted pyrrolo[1,2-b]isoquinolinones.
Collapse
Affiliation(s)
- Estefanía Capel
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Luis-Barrera
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Ana Sorazu
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Efraím Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
11
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
12
|
Zhang T, Wang Y, Wang B, Jin W, Xia Y, Liu C, Zhang Y. Visible‐Light‐Induced Oxidation of Diazenyl‐Protected Tetrahydroisoquinolines and Isoindolines for the Synthesis of Functionalized Lactams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yanhong Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
- College of Future Technology Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
13
|
Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Mane KD, Mukherjee A, Das GK, Suryavanshi G. Acetic Acid-Catalyzed Regioselective C(sp 2)-H Bond Functionalization of Indolizines: Concomitant Involvement of Synthetic and Theoretical Studies. J Org Chem 2022; 87:5097-5112. [PMID: 35337186 DOI: 10.1021/acs.joc.1c03019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atom economical and environmentally benign protocol has been developed for the regioselective C(sp2)-H bond functionalization of indolizines. The acetic acid-catalyzed cross-coupling reaction proceeds under metal-free conditions, producing a wide range of synthetically useful indolizine derivatives. The present protocol showed good functional group tolerance and broad substrate scope in good to excellent yields. Quantum mechanical investigation using density functional theory (DFT) has played a crucial role in understanding that acetic acid is the key player in determining the actual pathway as the catalyst and its ultrafast nature. Different pathways involving inter- and intramolecular proton transfer, with or without acetic acid, were investigated. Calculated results revealed that a proton shuttle mechanism is involved for the least energetic, most favorable acetic acid-catalyzed pathway. Furthermore, regioselectivity has also been explained theoretically.
Collapse
Affiliation(s)
- Kishor D Mane
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anirban Mukherjee
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki-shi, Osaka 567- 0047, Japan
| | - Gourab Kanti Das
- Department of Chemistry, Institute of Science (Siksha Bhavana), Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
15
|
More SG, Suryavanshi G. Lewis acid triggered N-alkylation of sulfoximines through nucleophilic ring-opening of donor-acceptor cyclopropanes: synthesis of γ-sulfoximino malonic diesters. Org Biomol Chem 2022; 20:2518-2529. [PMID: 35266938 DOI: 10.1039/d2ob00213b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium triflate (Sc(OTf)3) catalyzed, mild, and regioselective ring-opening reaction of donor-acceptor (D-A) cyclopropanes has been developed using sulfoximines for the synthesis of γ-sulfoximino malonic diesters. This protocol allows the synthesis of different N-alkyl sulfoximines in good to excellent yields (up to 94%) with broad functional group tolerance. In this process, N-H and C-C bonds are cleaved to form new C-N and C-H bonds. The feasibility of this method is supported by a gram-scale reaction and synthetic elaboration of the obtained product.
Collapse
Affiliation(s)
- Satish G More
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gurunath Suryavanshi
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411 008, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
16
|
Gan S, Zeng Y, Liu J, Nie J, Lu C, Ma C, Wang F, Yang G. Click-based conjugated microporous polymers as efficient heterogeneous photocatalysts for organic transformations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02076e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Click-based conjugated microporous polymers were found to be highly efficient photocatalysts for the Ugi reaction and α-oxidation of N-substituted tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Shaolin Gan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jiaxin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
17
|
Das S. Stereoselective synthesis of fused-, spiro- and bridged heterocycles via cyclization of isoquinolinium salts: A recent update. Org Biomol Chem 2022; 20:1838-1868. [DOI: 10.1039/d1ob02478g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoquinoline and its derivatives are ubiquitous in natural alkaloids, synthetic materials and pharmaceuticals with broad spectrum of biological activities. In particular, isoquinolinium salts are important in organic synthesis because they...
Collapse
|
18
|
Kumar I, Thakur A, Manisha, Sharma U. α-Oxygenation of N-aryl/alkyl heterocyclic compounds via ruthenium photocatalysis. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00200g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We herein report ruthenium(iii) photocatalyzed oxidation of N-aryl tertiary amines to the corresponding amides.
Collapse
Affiliation(s)
- Inder Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ankita Thakur
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manisha
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|