1
|
Xie J, Li W, Lu Y, Zheng Y, Huang Y, Chen S, Song Q. Unlocking Diverse π-Bond Enrichment Frameworks by the Synthesis and Conversion of Boronated Phenyldiethynylethylenes. J Am Chem Soc 2024; 146:10167-10176. [PMID: 38536043 DOI: 10.1021/jacs.4c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The π-bond enrichment frameworks not only serve as a crucial building block in organic synthesis but also assume a pivotal role in the fields of materials science, biomedicine, photochemistry, and other related disciplines owing to their distinctive structural characteristics. The incorporation of various substituents into the C═C double bonds of tetrasubstituted alkenes is currently a highly significant research area. However, the synthesis of tetrasubstituted alkenes with diverse substituents on double bonds poses a significant challenge in achieving stereoselectivity. Here, we reported an efficient and convergent route of Cu-catalyzed borylalkynylation of both symmetrical and unsymmetrical 1,3-diynes, B2pin2, and acetylene bromide to the construction of boronated phenyldiethynylethylene (BPDEE) derivatives with excellent chemo-, stereo-, and regioselectivities. BPDEE derivatives could transform into novel tetrasubstituted organic π-conjugated gem-diphenyldiethynylethylene (DPDEE), vinylphenyldiethynylethylene (VPDEE), and phenyltriethynylethylene (PTEE) derivatives by a stepwise process, which provides a flexible platform for the synthesis of complex π-bond enrichment frameworks that were difficult to synthesize by previous methods. The initial optical characterization revealed that the synthesized molecules exhibited aggregation-induced emission (AIE) properties, which further establishes the groundwork for future applications and enriches and advances the field of functional π-conjugated frameworks research.
Collapse
Affiliation(s)
- Jinhui Xie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yong Lu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanping Zheng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanying Huang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shanglin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Shaughnessy KH. Nitrogen cuts in during C-C cross-coupling. Science 2024; 383:954. [PMID: 38422157 DOI: 10.1126/science.ado0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A catalyst system diverts traditional C-C bond coupling into desired C-N bond formation.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
3
|
Jiang S. Palladium complex supported on the surface of magnetic Fe 3O 4 nanoparticles: an ecofriendly catalyst for carbonylative Suzuki-coupling reactions. RSC Adv 2023; 13:34273-34290. [PMID: 38047105 PMCID: PMC10690082 DOI: 10.1039/d3ra06533b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Diaryl ketone derivatives include well-known compounds with important physiological and biological properties. In order to prepare diaryl ketone derivatives, we constructed a pallidum (0) complex immobilized on Fe3O4 nanoparticles modified with aminobenzoic acid and phenanthroline [Fe3O4@ABA/Phen-DCA-Pd(0)], and evaluated its catalytic performance for carbonylative Suzuki-coupling reactions of aryl iodides with aryl boronic acid in the presence of Mo(CO)6 as the CO source under mild conditions. FT-IR, SEM, TEM, EDX, VSM, TGA, XRD, ICP-OES and Elemental mapping techniques were employed to identify the structure of the Fe3O4@ABA/Phen-DCA-Pd(0) nanocatalyst. Different derivatives of aryl iodides and aryl boronic acids containing withdrawing and donating functional groups were studied for the preparation of diaryl ketones. Also, various derivatives of heteroaryl iodides and boronic acids were used and the desired products were prepared with high yields. The Fe3O4@ABA/Phen-DCA-Pd(0) nanocatalyst was separated magnetically and reused 7 consecutive times without reducing its catalytic activity. VSM, TEM and ICP-OES spectroscopic techniques confirmed that the synthesized Fe3O4@ABA/Phen-DCA-Pd(0) catalyst was still stable and maintained its structure despite repeated reuse.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Chemistry and Chemical Engineering, Lvliang University Lvliang Shanxi 033000 PR China
| |
Collapse
|
4
|
Xie T, Hu G, Zhang S, Xu T, Zeng F. Palladium/Lewis Acid Co-catalyzed Cyclocarbonylation of (2-Aminoaryl)(aryl)methanols: An Access to 3-Aryl-indolin-2-ones. J Org Chem 2023; 88:12367-12375. [PMID: 37590397 DOI: 10.1021/acs.joc.3c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A benign approach to valuable 3-aryl-indolin-2-ones was developed based on palladium(II)/Lewis acid-cocatalyzed cyclocarbonylation of readily available (2-aminoaryl)(aryl)methanols. The protocol features producing water as the only byproduct, mild reaction conditions, and good efficiency, constituting an array of 3-arylindolin-2-ones in yields of 35 to 90%. The reaction can be easily scaled up to the gram scale in good yields.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Gendan Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Shengjun Zhang
- State Energy Key Laboratory of Clean Coal Grading Conversion, Modern Chemical Technology Department, Shaanxi Key Laboratory of Low Rank Coal Pyrolysis, Shaanxi Coal and Chemical Technology Institute Company Limited, Xi'an 710100, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
5
|
Magne A, Carretier E, Ubiera Ruiz L, Clair T, Le Hir M, Moulin P. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. MEMBRANES 2023; 13:738. [PMID: 37623799 PMCID: PMC10456598 DOI: 10.3390/membranes13080738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Catalyst recovery is a major challenge for reaching the objectives of green chemistry for industry. Indeed, catalysts enable quick and selective syntheses with high reaction yields. This is especially the case for homogeneous platinoid catalysts which are almost indispensable for cross-coupling reactions often used by the pharmaceutical industry. However, they are based on scarce, expensive, and toxic resources. In addition, they are quite sensitive and degrade over time at the end of the reaction. Once degraded, their regeneration is complex and hazardous to implement. Working on their recovery could lead to highly effective catalytic chemistries while limiting the environmental and economic impacts of their one-time uses. This review aims to describe and compare conventional processes for metal removal while discussing their advantages and drawbacks considering the objective of homogeneous catalyst recovery. Most of them lead to difficulty recycling active catalysts due to their ability to only treat metal ions or to chelate catalysts without the possibility to reverse the mechanism. However, membrane processes seem to offer some perspectives with limiting degradations. While membranes are not systematically the best option for recycling homogeneous catalysts, current development might help improve the separation between pharmaceutical active ingredients and catalysts and enable their recycling.
Collapse
Affiliation(s)
- Adrien Magne
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Emilie Carretier
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
| | - Lilivet Ubiera Ruiz
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Thomas Clair
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Morgane Le Hir
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Philippe Moulin
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
| |
Collapse
|
6
|
Wu X, Zeng Y, Meng L, Li X. Mechanistic insights and computational design of Cu/M bimetallic synergistic catalysts for Suzuki-Miyaura coupling of arylboronic esters with alkyl halides. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Karakaya I, Rizwan K, Munir S. Transition‐Metal Catalyzed Coupling Reactions for the Synthesis of (Het)aryl Ketones: An Approach from their Synthesis to Biological Perspectives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Zhang B, Deng W, Xu ZY. Palladium-Catalyzed Carbonylation of Amines with Mo(CO) 6 as the Carbonyl Source. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Qiu CS, Qiu NP, Flinn C, Zhao Y. DFT mechanistic studies of boron-silicon exchange reactions between silyl-substituted arenes and boron bromides. Phys Chem Chem Phys 2023; 25:6714-6725. [PMID: 36805579 DOI: 10.1039/d2cp05615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
C-B bond forming reactions are important methodologies in modern synthetic chemistry, since many borylated organic substrates, ranging from alkanes and alkenes to arenes and heteroarenes, are useful intermediates for the synthesis of natural products, pharmaceuticals, and organic π-conjugated materials. Among numerous borylation methods, C-Si/B-Br exchange reactions have attracted increasing attention in recent years. While experimental exploration has been continually carried out for more than two decades, mechanistic insights into this type of reaction have not yet been clearly established. To address this deficiency of knowledge, we performed density functional theory (DFT) calculations to map out the reaction pathways for a range of boron-silicon exchange reactions between boron tribromide (BBr3) and trimethylsilyl-substituted arenes (TMSAr). Our computational analyses have disclosed the energetic, structural, and electronic properties for key stationary points on the potential energy surfaces (PES) in both the gas and solution (CH2Cl2) phases.
Collapse
Affiliation(s)
- Christopher S Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Nicholas P Qiu
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Christopher Flinn
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
10
|
Olding A, Ho CC, Lucas NT, Canty AJ, Bissember AC. Pretransmetalation Intermediates in Suzuki–Miyaura C–C and Carbonylative Cross-Couplings: Synthesis and Structural Authentication of Aryl- and Aroylnickel(II) Boronates. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Angus Olding
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Curtis C. Ho
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Nigel T. Lucas
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Allan J. Canty
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alex C. Bissember
- School of Natural Sciences−Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
11
|
Yang C, Shi L, Wang W, Xia JB, Li F. Rhodium-catalyzed aminoacylation of alkenes via carbonylative C–H activation toward poly(hetero)cyclic alkylarylketones. Org Chem Front 2023. [DOI: 10.1039/d2qo01777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work discloses the facile construction of polyheterocyclic alkylarylketones by the rhodium-catalyzed carbonylative aminoacylation of alkenes involving C–H activation, which provides molecules as candidates for the screening of antitumor agents.
Collapse
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Liang JX, Yang PF, Shu W. Synthesis of (Hetero)aryl/Alkenyl Iodides via Ni-Catalyzed Finkelstein Reaction from Bromides or Chlorides. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jian-Xing Liang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Peng-Fei Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
13
|
Riva L, Nicastro G, Liu M, Battocchio C, Punta C, Sacchetti A. Pd-Loaded Cellulose NanoSponge as a Heterogeneous Catalyst for Suzuki-Miyaura Coupling Reactions. Gels 2022; 8:gels8120789. [PMID: 36547313 PMCID: PMC9778444 DOI: 10.3390/gels8120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The (eco)design and synthesis of durable heterogeneous catalysts starting from renewable sources derived from biomass waste represents an important step for reducing environmental impacts of organic transformations. Herein, we report the efficient loading of Pd(II) ions on an eco-safe cellulose-based organic support (CNS), obtained by thermal cross-linking between TEMPO-oxidized cellulose nanofibers and branched polyethyleneimine in the presence of citric acid. A 22.7% w/w Pd-loading on CNS was determined by the ICP-OES technique, while the metal distribution on the xerogel was evidenced by SEM-EDS analysis. XPS analysis confirmed the direct chelation of Pd(II) ions by means of the high number of amino groups present in the network, so that further functionalization of the support with specific ligands was not necessary. The new composite turned to be an efficient heterogeneous pre-catalyst for promoting Suzuki-Miyaura coupling reactions between aryl halides and phenyl boronic acid in water, obtaining yields higher than 90% in 30 min, by operating in a microwave reactor at 100 °C and with just 2% w/w of CNS-Pd catalyst with respect to aryl halides (4.5‱ for Pd). At the end of first reaction cycle, Pd(II) ions on the support resulted in being reduced to Pd(0) while maintaining the same catalytic efficiency. In fact, no leaching was observed at the end of reactions, and five cycles of recycling and reusing of CNS-Pd catalyst provided excellent results in terms of yields and selectivity in the desired products.
Collapse
Affiliation(s)
- Laura Riva
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
| | - Gloria Nicastro
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
| | - Mingchong Liu
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
- Istituto di Scienze e Tecnologie Chimiche, “Giulio Natta” (SCITEC), National Research Council-CNR, 20131 Milan, Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milan, Italy
- Correspondence: ; Tel.: +39-0223993017
| |
Collapse
|
14
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
15
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Palladium-Mediated Carbonylative Suzuki Coupling for DNA-Encoded Library Synthesis. Org Lett 2022; 24:5214-5219. [PMID: 35830624 DOI: 10.1021/acs.orglett.2c02113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing new DNA-compatible reactions is key to expanding the accessible chemical space of DNA-encoded library (DEL) technology. Here we disclose the first report of a DNA-compatible carbonylative Suzuki coupling of DNA-conjugated (hetero)aryl iodides with (hetero)aryl boronic acids to access di(hetero)aryl ketones, a valuable structural motif present within several approved or clinically advanced small molecules. The reported DNA-compatible, Pd(OAc)2-mediated system is mild, uses a robust protocol, has a wide substrate scope for both coupling partners, is suitable for large-scale DEL productions, and provides a source of previously unexplored chemical matter for DEL screens.
Collapse
Affiliation(s)
- Pratik R Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
16
|
Cortés-Mendoza S, Adamczyk D, Badillo-Gómez JI, Urrutigoity M, Ortega-Alfaro MC, López-Cortés JG. Carbonylative Suzuki Coupling Catalyzed by Pd Complexes Based on [N,P]‐Pyrrole Ligands: Direct Access to 2‐Hydroxybenzophenones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Yang CH, Liu YH, Peng SM, Liu ST. Photoaccelerated Suzuki–Miyaura and Sonogashira coupling reactions catalyzed by an Ir-Pd binuclear complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kusakabe T, Liu D, Tsuchida K, Okazaki S, Hashimoto T, Mori A, Yoshiwaka K, Sasai H, Takahashi K, Kato K. Reinvestigation of Methoxy‐methoxycarbonylation of Monosubstituted Allenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taichi Kusakabe
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Dongwei Liu
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Kaori Tsuchida
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shun Okazaki
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Tsuyoshi Hashimoto
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Akane Mori
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Kentaro Yoshiwaka
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR) Osaka University Mihogaoka Ibaraki-shi Osaka 567-0047 Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
19
|
Manjón‐Mata I, Quirós MT, Velasco‐Juárez E, Buñuel E, Cárdenas DJ. Nickel‐Catalyzed Hydroborylative Polycyclization of Allenynes: an Atom‐Economical and Diastereoselective Synthesis of Bicyclic 5‐5 Fused Rings. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inés Manjón‐Mata
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - M. Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry Facultad de Farmacia Universidad de Alcalá Campus Universitario. Ctra. Madrid-Barcelona, Km. 33,600. Alcalá de Henares 28871 Madrid Spain
| | - Elena Velasco‐Juárez
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Elena Buñuel
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| | - Diego J. Cárdenas
- Department of Organic Chemistry Facultad de Ciencias Universidad Autónoma de Madrid Institute for Advanced Research in Chemical Sciences (IAdChem) Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
20
|
Darbem MP, Esteves HA, Burrow RA, Soares-Paulino AA, Pimenta DC, Stefani HA. Synthesis of unprotected glyco-alkynones via molybdenum-catalyzed carbonylative Sonogashira cross-coupling reaction. RSC Adv 2022; 12:2145-2149. [PMID: 35425248 PMCID: PMC8979075 DOI: 10.1039/d1ra08388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Herein we report a novel Mo-catalyzed carbonylative Sonogashira cross-coupling between 2-iodoglycals and terminal alkynes. The reaction displays major improvements compared to a related Pd-catalyzed procedure previously published by our group, such as utilizing unprotected sugar derivatives as starting materials and tolerance to substrates bearing chelating groups. In this work we also demonstrate the utility of the glyco-alkynone products as platform for further functionalization by synthesizing glyco-flavones via Au-catalyzed 6-endo-dig cyclization.
Collapse
Affiliation(s)
- Mariana P Darbem
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Robert A Burrow
- Departamento de Química, Universidade Federal de Santa Maria Santa Maria 97105-340 Brazil
| | - Antônio A Soares-Paulino
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | | | - Hélio A Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| |
Collapse
|
21
|
Fang J, Min Q, Qin H, Liu F. Intermolecular Acylation with Acylphosphonates as Alkyl Radical Receptor under Metal-Free Conditions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Yi W, Sun W, Hu X, Liu C, Jin L. Recent Advance of Ketones Synthesis from Carboxylic Esters. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Mamontova E, Favier I, Pla D, Gómez M. Organometallic interactions between metal nanoparticles and carbon-based molecules: A surface reactivity rationale. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Yano de Albuquerque D, Teixeira WKO, Sacramento MD, Alves D, Santi C, Schwab RS. Palladium-Catalyzed Carbonylative Synthesis of Aryl Selenoesters Using Formic Acid as an Ex Situ CO Source. J Org Chem 2021; 87:595-605. [PMID: 34962405 DOI: 10.1021/acs.joc.1c02608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new catalytic protocol for the synthesis of selenoesters from aryl iodides and diaryl diselenides has been developed, where formic acid was employed as an efficient, low-cost, and safe substitute for toxic and gaseous CO. This protocol presents a high functional group tolerance, providing access to a large family of selenoesters in high yields (up to 97%) while operating under mild reaction conditions, and avoids the use of selenol which is difficult to manipulate, easily oxidizes, and has a bad odor. Additionally, this method can be efficiently extended to the synthesis of thioesters with moderate-to-excellent yields, by employing for the first time diorganyl disulfides as precursors.
Collapse
Affiliation(s)
- Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Wystan K O Teixeira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Manoela do Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06123 Perugia, Italy
| | - Ricardo S Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
25
|
Su BK, Liu YH, Peng SM, Liu ST. An Anthyridine-Based Pentanitrogen Donor Switches from Mono- to Tetradentate with Pd(II) Ions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo-Kai Su
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
26
|
Alsalahi W, Augustyniak AW, Tylus W, Trzeciak AM. New Palladium - ZrO 2 Nano-Architectures from Thermal Transformation of UiO-66-NH 2 for Carbonylative Suzuki and Hydrogenation Reactions. Chemistry 2021; 28:e202103538. [PMID: 34850478 DOI: 10.1002/chem.202103538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 12/15/2022]
Abstract
The new nanocomposites, Pd/C/ZrO2 , PdO/ZrO2, and Pd/PdO/ZrO2 , were prepared by thermal conversion of Pd@UiO-66-Zr-NH2 (MOF) in nitrogen or air atmosphere. The presence of Pd nanoparticles, uniformly distributed on the ZrO2 or C/ZrO2 matrix, was evidenced by transmission electron microscopy, scanning electron microscopy (SEM), Raman and X-ray Photoelectron Spectroscopy (XPS) methods. All pyrolysed composites retained the shape of the MOF template. They catalyze carbonylative Suzuki coupling under 1 atm CO with an efficiency significantly higher than the original Pd@UiO-66-Zr-NH2 . The most active PdO/ZrO2 composite, formed benzophenone with TOF up to 1600 h-1 , while by using Pd@UiO-66-Zr-NH2 , much lower TOF values, 51-95 h-1 , were achieved. After the reaction, PdO/ZrO2 was recovered with the same composition and catalytic activity. Very good results were also obtained in the transfer hydrogenation of benzophenones to alcohols with Pd/C/ZrO2 and PdO/ZrO2 catalysts under microwave irradiation.
Collapse
Affiliation(s)
- Waleed Alsalahi
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| | - Adam W Augustyniak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| | - Włodzimierz Tylus
- Department of Advanced Material Technologies Faculty of Chemistry, Wrocław University Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna M Trzeciak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383, Wrocław, Poland
| |
Collapse
|
27
|
Ren Q, Zhang D, Zheng L. DFT studies on the mechanisms of enantioselective Ni-catalyzed reductive coupling reactions to form 1,1-diarylalkanes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Schindler K, Zobi F. Photochemistry of Rhenium(i) Diimine Tricarbonyl Complexes in Biological Applications. Chimia (Aarau) 2021; 75:837-844. [PMID: 34728010 DOI: 10.2533/chimia.2021.837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Luminescent rhenium complexes continue to be the focus of growing scientific interest for catalytic, diagnostic and therapeutic applications, with emphasis on the development of their photophysical and photochemical properties. In this short review, we explore such properties with a focus on the biological applications of the molecules. We discuss the importance of the ligand choice to the contribution and their involvement towards the most significant electronic transitions of the metal species and what strategies are used to exploit the potential of the molecules in medicinal applications. We begin by detailing the photophysics of the molecules; we then describe the three most common photoreactions of rhenium complexes as photosensitizers in H₂ production, photocatalysts in CO₂ reduction and photochemical ligand substitution. In the last part, we describe their applications as luminescent cellular probes and how photochemical ligand substitution is utilized in the development of photoactive carbon monoxide-releasing molecules as anticancer and antimicrobial agents.
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland;,
| |
Collapse
|
29
|
Du Y, Gou F, Gao D, Liu Z, Shao L, Qi C. Palladium nanoparticles encapsulated in polyimide nanofibers: An efficient and recyclable catalyst for coupling reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Faliang Gou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Danning Gao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Zhifeng Liu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| |
Collapse
|
30
|
Xu T, Wang Q, Yang Z, Yi L, Wang JS, Lu W, Ying J, Wu XF. Supported Palladium-Catalyzed Carbonylative Synthesis of Diaryl Ketones from Aryl Bromides and Arylboronic Acids. Chem Asian J 2021; 16:2027-2030. [PMID: 34107162 DOI: 10.1002/asia.202100540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Indexed: 12/16/2022]
Abstract
A palladium supported on graphitic carbon nitride (Pd/g-C3 N4 ) catalyzed carbonylative reaction of aryl bromides and arylboronic acids by has been developed for the construction of diaryl ketones. Using benzene-1,3,5-triyl triformate (TFBen) as the CO source, the reaction proceeded well to give various diaryl ketones in moderate to good yields.
Collapse
Affiliation(s)
- Tiefeng Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qi Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zeyi Yang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Lili Yi
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jian-Shu Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China.,Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| |
Collapse
|
31
|
Lin SCA, Su BK, Liu YH, Peng SM, Liu ST. Tetra- and Dinuclear Palladium Complexes Based on a Ligand of 2,8-Di-2-pyridinylanthyridine: Preparation, Characterization, and Catalytic Activity. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Bo-Kai Su
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|