1
|
Yan G, Ma J, Qi S, Kirillov AM, Yang L, Fang R. DFT rationalization of the mechanism and selectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols. Phys Chem Chem Phys 2024. [PMID: 39511988 DOI: 10.1039/d4cp01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The mechanism, regioselectivity, and chemoselectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols to give furan-3-carboxylate derivatives were explored by density functional theory (DFT). The obtained results revealed that the first step of the global reaction involves a nucleophilic attack of a pyridine-N-oxide derivative on the catalyst-ligated diynone, forming a vinyl intermediate that can isomerize to an α,α'-dioxo gold carbene upon the cleavage of the N-O bond. In the second step, a nucleophilic addition is also completed via pyridine-N-oxide instead of an alcohol proposed in the experiment. In the following steps, the selective nucleophilic addition of alcohol, 1,2-alkynyl migration, five-membered cyclization, and protodeauration lead to the furan-based products with the regeneration of the gold catalyst. The unique features of regio- and chemoselectivity were investigated in detail by the global reactivity index (GRI) and distortion/interaction analyses. Apart from fully rationalizing the experimental data, the DFT results provide an important contribution to understanding, optimizing, and further developing the related types of organic transformations.
Collapse
Affiliation(s)
- Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
2
|
Jung C, Hwang J, Lee K, Viji M, Jang H, Kim H, Song S, Rajasekar S, Jung JK. Reagent-Free Intramolecular Hydroamination of Ynone-Tethered Aryl-sulfonamide: Synthesis of Polysubstituted 4-Quinolones. J Org Chem 2024; 89:13691-13702. [PMID: 39213512 DOI: 10.1021/acs.joc.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An efficient reagent-free method for the synthesis of polysubstituted 4-quinolone from 2-substituted alkynoyl aryl-sulfonamide was developed. This developed method tolerates various functional groups and gives the corresponding 4-quinolones. We have successfully extended this method to the synthesis of dihydro-4-quinolones from 2-alkenoyl aryl sulfonamide derivatives.
Collapse
Affiliation(s)
- Chanhyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jinha Hwang
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kwanghee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of Kashmir, J&K 191201, India
| | - Hongjun Jang
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyoungsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Sukgil Song
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Shanmugam Rajasekar
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
3
|
Maikhuri VK, Mathur D, Chaudhary A, Kumar R, Parmar VS, Singh BK. Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Top Curr Chem (Cham) 2024; 382:4. [PMID: 38296918 DOI: 10.1007/s41061-024-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017-2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.
Collapse
Affiliation(s)
- Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Divya Mathur
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
- Department of Chemistry, Daulat Ram College, University of Delhi, Delhi, 110007, India.
| | - Ankita Chaudhary
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, India
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Nanoscience Program, CUNY Graduate Center and Department of Chemistry, City College & Medgar Evers College, The City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
4
|
Lu M, Liu Y. Gold-Catalyzed Oxidative Cyclization/C-C Bond Cleavage of Ynones with External Nucleophiles: Synthesis of Linear Functionalized N-Tosylamides. Org Lett 2023; 25:8105-8109. [PMID: 37916839 DOI: 10.1021/acs.orglett.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A gold-catalyzed oxidative cyclization/nucleophilic addition/C-C bond cleavage reaction of ynones with various nucleophiles has been developed. This methodology allows for the formation of highly functionalized linear N-Ts amides with broad substrate scope, high efficiency, and general tolerance of functional groups. A wide range of nucleophiles such as alcohols, water, and amines including aryl and alkyl amines are compatible with the current method. The C-C triple bond cleavage of the ynone substrate was observed during the process.
Collapse
Affiliation(s)
- Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
5
|
Wang A, Lu M, Xie X, Liu Y. Gold(III) or Gold(I)/Lewis-Acid-Catalyzed Substitution/Cyclization/1,2-Migration Reactions of Propargyl Alcohols with 3-Amino-benzo[ d]isoxazoles: Synthesis of Pyrimidine Derivatives. Org Lett 2022; 24:2944-2949. [DOI: 10.1021/acs.orglett.2c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
6
|
Wu X, Zhao LP, Xie JM, Fu YM, Zhu CF, Li YG. Access to 3-Sulfonamidoquinolines by Gold-Catalyzed Cyclization of 1-(2'-Azidoaryl)propargylsulfonamides through 1,2- N Migration. J Org Chem 2021; 87:801-812. [PMID: 34928156 DOI: 10.1021/acs.joc.1c02450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a gold-catalyzed cyclization of 1-(2'-azidoaryl)propargylsulfonamides for the synthesis of 3-sulfonamidoquinolines, featuring a rare and highly selective 1,2-N migration. The key α-imino gold carbene intermediate is generated through an intramolecular nucleophilic attack of the azide group to the Au-activated triple bonds in a 6-endo-dig manner.
Collapse
Affiliation(s)
- Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li-Ping Zhao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jin-Ming Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan-Ming Fu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Feng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - You-Gui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Wang A, Lu M, Liu Y. Gold-Catalyzed Oxidative Cyclization Involving Nucleophilic Attack to the Keto Group of α,α'-Dioxo Gold Carbene and 1,2-Alkynyl Migration: Synthesis of Furan-3-carboxylates. Org Lett 2021; 23:6813-6818. [PMID: 34428072 DOI: 10.1021/acs.orglett.1c02389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent strategy for the synthesis of functionalized furan-3-carboxylates based on gold-catalyzed oxidative cyclization of diynones with alcohols or water has been developed. Mechanistic studies revealed that a rare nucleophilic attack to the carbonyl group of the α,α'-dioxo gold carbene instead of the carbene center and 1,2-alkynyl group migration were involved in this transformation. This method offers several advantages such as mild conditions, high regio- and chemoselectivity, and wide functional group compatibility.
Collapse
Affiliation(s)
- Ali Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|