1
|
Feng MH, Chen DQ, Gao SJ, Ge D, Chen X, Ma M, Shen ZL, Chu XQ. Defluorinative Diazolation-Cyclization Relay for Synthesis of Furan-Bridged Triheterocycles and Colorimetric Sensor Application. Chemistry 2024:e202404324. [PMID: 39688877 DOI: 10.1002/chem.202404324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Polyaromatics, as the assembly of diverse cyclic π-systems, exhibit unique physicochemical properties when compared to their individual constituents. In this study, we developed a strategic connection of two azacycles via a furan bridge through a defluorinative diazolation-cyclization reaction of trifluoromethyl enones and N-heterocycles. A range of modular 2,4-furan-bridged triheterocycles (FBTHs), featuring a C3-trifluoromethyl group, was synthesized with broad substrate scope and good regioselectivity under transition metal-free conditions. This three-component protocol was achieved through successive C(sp3)-F bond functionalization of one trifluoromethyl group, which is recognized for its stability and durability. Moreover, the synthetically useful functionalities such as bromide and formyl group could be easily installed on the resulting products, and the imidazole-containing FBTH could serve as a valuable ligand in the preparation of an advanced colorimetric sensor, thereby underscoring their potential applications.
Collapse
Affiliation(s)
- Man-Hang Feng
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Da-Qing Chen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shu-Ji Gao
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaojun Chen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Robert EGL, Waser J. Ficini Reaction with Acrylates for the Stereoselective Synthesis of Aminocyclobutanes. Chemistry 2024; 30:e202401810. [PMID: 38869382 DOI: 10.1002/chem.202401810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
The first Ficini reaction between ynamides and acrylates is reported herein. The reaction is catalyzed by B(C6F5)3 acting as a Lewis acid and is giving access to stable tri-substituted aminocyclobutenes in high yield. The resulting products can be hydrogenated and epimerized under basic conditions or in presence of a Lewis acid, providing two distinct trans- aminocyclobutane monoester stereoisomers in high yield and diastereoisomeric ratio (up to quantitative yield and >99 : 1 dr).
Collapse
Affiliation(s)
- Emma G L Robert
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Synthesis and Structural Study of Amidrazone Derived Pyrrole-2,5-Dione Derivatives: Potential Anti-Inflammatory Agents. Molecules 2022; 27:molecules27092891. [PMID: 35566243 PMCID: PMC9099820 DOI: 10.3390/molecules27092891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
1H-pyrrole-2,5-dione derivatives are known for their wide range of pharmacological properties, including anti-inflammatory and antimicrobial activities. This study aimed to synthesize new 3,4-dimethyl-1H-pyrrole-2,5-dione derivatives 2a–2f in the reaction of N3-substituted amidrazones with 2,3-dimethylmaleic anhydride and evaluate their structural and biological properties. Compounds 2a–2f were studied by the 1H-13C NMR two-dimensional techniques (HMQC, HMBC) and single-crystal X-ray diffraction (derivatives 2a and 2d). The anti-inflammatory activity of compounds 2a–2f was examined by both an anti-proliferative study and a production study on the inhibition of pro-inflammatory cytokines (IL-6 and TNF-α) in anti-CD3 antibody- or lipopolysaccharide-stimulated human peripheral blood mononuclear cell (PBMC) cultures. The antibacterial activity of compounds 2a–2f against Staphylococcus aureus, Enterococcus faecalis, Micrococcus luteus, Esherichia coli, Pseudomonas aeruginosa, Yersinia enterocolitica, Mycobacterium smegmatis and Nocardia corralina strains was determined using the broth microdilution method. Structural studies of 2a–2f revealed the presence of distinct Z and E stereoisomers in the solid state and the solution. All compounds significantly inhibited the proliferation of PBMCs in anti-CD3-stimulated cultures. The strongest effect was observed for derivatives 2a–2d. The strongest inhibition of pro-inflammatory cytokine production was observed for the most promising anti-inflammatory compound 2a.
Collapse
|
4
|
Wang J, Lv Y, Shang Y, Cui Z, Wang KH, Huang D, Hu Y. Research Progress of Reactions Participated by α-Hydroxy Ketones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|