1
|
Dai M, Zhang Y, Zhang X, Wang R, Wei W, Zhang Z, Liang T. Iodine-Mediated C2,3-H Aminoheteroarylation of Indoles. J Org Chem 2023; 88:15106-15117. [PMID: 37864558 DOI: 10.1021/acs.joc.3c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.
Collapse
Affiliation(s)
- Maoyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ruiyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
2
|
Yu C, E R, Zhang XW, Hu WQ, Bao G, Li Y, Liu Y, He Z, Li J, Ma W, Mou LY, Wang R, Sun W. NaClO-Mediated Cross Installation of Indoles and Azoles Benefits Anticancer Hit Discovery. ChemMedChem 2023; 18:e202200651. [PMID: 36585386 DOI: 10.1002/cmdc.202200651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Innovations in synthetic chemistry have a profound impact on the drug discovery process, and will always be a necessary driver of drug development. As a result, it is of significance to develop novel simple and effective synthetic installation of medicinal modules to promote drug discovery. Herein, we have developed a NaClO-mediated cross installation of indoles and azoles, both of which are frequently encountered in drugs and natural products. This effective toolbox provides a convenient synthetic route to access a library of N-linked 2-(azol-1-yl) indole derivatives, and can be used for late-stage modification of drugs, natural products and peptides. Moreover, biological screening of the library has revealed that several adducts showed promising anticancer activities against A549 and NCI-H1975 cells, which give us a hit for anticancer drug discovery.
Collapse
Affiliation(s)
- Changjun Yu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Ruiyao E
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Xiao-Wei Zhang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Wen-Qian Hu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Guangjun Bao
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Yiping Li
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Yuyang Liu
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Zeyuan He
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Jingyue Li
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Wen Ma
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Ling-Yun Mou
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| | - Rui Wang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, P. R. China
| | - Wangsheng Sun
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, Gansu, P. R. China
| |
Collapse
|
4
|
Li YN, Wang B, Huang YK, Hu JS, Sun JN. Recent advances in metal catalyst- and oxidant-free electrochemical C-H bond functionalization of nitrogen-containing heterocycles. Front Chem 2022; 10:967501. [PMID: 36059873 PMCID: PMC9437222 DOI: 10.3389/fchem.2022.967501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
The C-H functionalization of nitrogen-containing heterocycles has emerged as a powerful strategy for the construction of carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds. In order to achieve efficient and selective C-H functionalization, electrochemical synthesis has attracted increasing attention. Because electrochemical anodic oxidation is ideal for replacing chemical reagents in C-H functionalization reactions. This mini-review summarizes the current knowledge and recent advances since 2017 in the synthetic utility of electrochemical transformations for the C-H functionalization of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ya-Nan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
- *Correspondence: Ya-Nan Li, ; Jia-Nan Sun,
| | - Bin Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Ye-Kai Huang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jin-Song Hu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jia-Nan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
- *Correspondence: Ya-Nan Li, ; Jia-Nan Sun,
| |
Collapse
|