Castro-Godoy WD, Heredia AA, Bouchet LM, Argüello JE. Synthesis of Selenium Derivatives using Organic Selenocyanates as Masked Selenols: Chemical Reduction with Rongalite as a Simpler Tool to give Nucleophilic Selenides.
Chempluschem 2024;
89:e202400183. [PMID:
38648466 DOI:
10.1002/cplu.202400183]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The chemical reduction within a family of organic selenocyanates, as masked selenols, using reducing agents, such as Rongalite, sodium dithionite, and sodium thiosulfate is investigated. Using Rongalite, the corresponding diselenides were obtained quantitatively and selectively in very good to excellent yields (51-100 %) starting from alkyl, aryl, and benzyl selenocyanates. The scope of the reaction is unaffected by the electronic nature of the substituents. Furthermore, the reducing agent, Rongalite, is compatible with hydrolysable and reducing-sensitive functional groups. Additionally, a simple methodology employing the in-situ generated benzyl selenolate anion (PhCH2Se-) to promote aliphatic nucleophilic substitution, epoxide ring opening, and Michael addition reactions has been developed; thus, extending the structural diversity of the synthesized selenium derivatives.
Collapse