1
|
Xi JM, Wei ZL, Liao WW. Cu-Catalyzed Relay Functionalization of Alkenes: Diverse Synthesis of Diazidated Quinazolinones and Polycyclic Imidazoles. Org Lett 2025. [PMID: 39788894 DOI: 10.1021/acs.orglett.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A Cu-catalyzed relay process for the preparation of diazidated quinazolinone and polycyclic imidazole derivatives in which readily available alkene-tethered substrates undergo an addition/cyclization/C(sp3)-H functionalization of alkene sequences with high efficiency is described. Various functionalized N-heteropolycyclic compounds were readily prepared in good yields with a broad substrate scope. Moreover, the direct azidation of the α-C(sp3)-H bond of the corresponding N-heterocycles has been demonstrated on the basis of mechanistic studies, which provide an alternative late-stage functionalization approach for the derivatization of N-heterocyclic scaffolds.
Collapse
Affiliation(s)
- Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Dong L, Wang X, Gou Y, Yu S, Yu Z. Photoredox/HAT-Catalyzed Intramolecular Hydrocyclization of Alkenes toward 2,3-Fused Quinazolinones and Dihydroquinazolinones. Org Lett 2024; 26:8756-8761. [PMID: 39356628 DOI: 10.1021/acs.orglett.4c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
New photochemical approaches to 2,3-fused quinazolinones and dihydroquinazolinones are disclosed. The intramolecular hydrocyclization proceeds in moderate to excellent yields across diverse alkenes with high regioselectivity and diastereocontrol. Mechanistic studies indicated that the radical cascade processes involve thiophenol acting as single-electron transfer and hydrogen atom transfer reagents. The success of the gram-scale synthesis proves the strategy can be used for practical applications.
Collapse
Affiliation(s)
- Li Dong
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Xiaoqing Wang
- College of Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Yanhui Gou
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Shuo Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
3
|
Su XD, Liu Q, Cheng JT, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer-Enabled Radical Cascade Reactions of Fluoroalkyl Bromides for the Synthesis of Ring-Fused Quinazolinones. Org Lett 2024; 26:7976-7980. [PMID: 39240022 DOI: 10.1021/acs.orglett.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The use of an earth-abundant and inexpensive iron complex as a catalyst, coupled with near-infrared (NIR) light as the energy source, for radical reactions with alkyl halides has been far less developed. In this study, we report NIR light-mediated iron(I) dimer-catalyzed radical cascade reactions of fluoroalkyl bromides for the synthesis of ring-fused quinazolinones bearing a difluoromethyl group. In this process, the 3-bromo-1,10-phenanthroline ligand facilitates the reactivity of [CpFe(CO)2]2, thereby improving the efficiency of the reaction.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
4
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
5
|
Wu X, Liu L, Xiang C, Yu JT, Pan C. Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3 H)-ones for the construction of quinoxalino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:2556-2559. [PMID: 38345179 DOI: 10.1039/d4cc00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A new kind of building unit, 3-(2-isocyanophenyl)quinazolin-4(3H)-ones, was designed and synthesized for the construction of novel quinoxalino[2,1-b]quinazolinones. The radical cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones with ethers afforded ether-substituted tetracyclic quinoxalino[2,1-b]quinazolinones under photocatalytic and metal-free conditions. In the process, the isocyano accepts a carbon radical to give an imidoyl radical, which adds to the electron-deficient CN bond in quinazolin-4(3H)-one.
Collapse
Affiliation(s)
- Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
6
|
Vaskevych A, Dekhtyar M, Vovk M. Cyclizations of Alkenyl(Alkynyl)-Functionalized Quinazolinones and their Heteroanalogues: A Powerful Strategy for the Construction of Polyheterocyclic Structures. CHEM REC 2024; 24:e202300255. [PMID: 37830463 DOI: 10.1002/tcr.202300255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Quinazolin-4-one, its heteroanalogues, and derivatives represent an outstandingly important class of compounds in modern organic, medicinal, and pharmaceutical chemistry, as these molecular structures are noted for their wide synthetic and pharmacological potential. In the last years, ever-increasing research attention has been paid to quinazolinone derivatives bearing alkenyl and alkynyl substituents on the pyrimidinone nucleus. The original structural combination of synthetically powerful endocyclic amidine (or amidine-related) and exocyclic unsaturated moieties provides a driving force for cyclizations, which offer an efficient toolkit to construct a variety of fused pyrimidine systems with saturated N- and N,S-heterocycles. In this connection, the present review article is mainly aimed at systematic coverage of the progress in using alkenyl(alkynyl)quinazolinones and their heteroanalogues as convenient bifunctional substrates for regioselective annulation of small- and medium-sized heterocyclic nuclei. Much attention is paid to elucidating the structural and electronic effects of reagents on the regio- and stereoselectivity of the cyclizations as well as to clarifying the relevant reaction mechanisms.
Collapse
Affiliation(s)
- Alla Vaskevych
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv 02660, Ukraine
| | - Maryna Dekhtyar
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| | - Mykhailo Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| |
Collapse
|
7
|
Liu Y, Li Z, Yang L, Li S, Chen Z. Photochemically induced chloromethylation/cyclization of benzimidazole derivatives with CCl 4/CHCl 3. Org Biomol Chem 2023; 21:8690-8694. [PMID: 37861680 DOI: 10.1039/d3ob01290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Herein, it is reported that a series of trichloromethyl/dichloromethyl substituted benzimidazole derivatives have been synthesized by dechlorination of CCl4/CHCl3 to form polychloromethyl radicals and cyclization with an unactivated olefin under a purple LED lamp. The protocol features a wide substrate scope, high atom economy, and excellent regioselectivity, and is easy to scale up.
Collapse
Affiliation(s)
- Yanmin Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Ziwei Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Luyao Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Shuo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| |
Collapse
|
8
|
Wu Y, Liu H, Liu L, Yu JT. Metal-free polychloromethylation/cyclization of unactivated alkenes towards ring-fused tricyclic indolones and benzoimidazoles. Org Biomol Chem 2023; 21:7079-7084. [PMID: 37641965 DOI: 10.1039/d3ob01191g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Polychloromethylative cyclization of N-alkenyl indoles was developed under metal-free conditions to afford tricyclic pyridoindolones and pyrroloindolones in moderate to good yields. In the reaction, commercially available CHCl3 and CH2Cl2 were employed as tri- and dichloromethyl radical sources. Moreover, tri- and dichloromethylated polycyclic benzoimidazoles can also be obtained under standard conditions.
Collapse
Affiliation(s)
- Yechun Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Han Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
9
|
Guo C, Li L, Yan Q, Zhou H, Liu ZQ, Li Z. Photoinduced Tandem Cyanomethylation/Cyclization of Unsaturated Compounds: Access to Cyanomethylated 7- or 5-Membered N-Heterocycles. J Org Chem 2023; 88:12141-12149. [PMID: 37530034 DOI: 10.1021/acs.joc.3c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A cyanomethylation/cyclization of aryl acetylenes/ethylenes with bromoacetonitrile was finished in a photopromoted condition, which offers an efficient and mild protocol for the preparation of cyanomethylated 7- or 5-membered N-heterocycles with good yields. Meanwhile, trichloroacetonitrile was also compatible with this radical pathway. In addition, a variety of single-crystal X-ray diffraction measurements, scaled-up operations to 1 mmol, functional group transformations of final products, light on/off experiments, and even radial inhibition studies were smoothly performed in this tandem system.
Collapse
Affiliation(s)
- Changyou Guo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Lijun Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qinqin Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Hongxun Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Zejiang Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
10
|
Wu HL, Zhang WK, Zhang CC, Wang LT, Yang WH, Tian WC, Ge GP, Xie LY, Yi R, Wei WT. Chemodivergent Tandem Radical Cyclization of Alkene-Substituted Quinazolinones: Rapid Access to Mono- and Di-Alkylated Ring-Fused Quinazolinones. Chemistry 2023; 29:e202301390. [PMID: 37280159 DOI: 10.1002/chem.202301390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
Chemodivergent tandem radical cyclization offers exciting possibilities for the synthesis of structurally diverse cyclic compounds. Herein, we revealed a chemodivergent tandem cyclization of alkene-substituted quinazolinones under metal- and base-free conditions, this transformation is initiated by alkyl radicals produced from oxidant-induced α-C(sp3 )-H functionalization of alkyl nitriles or esters. The reaction resulted in the selective synthesis of a series of mono- and di-alkylated ring-fused quinazolinones by modulating the loading of oxidant, reaction temperature, and reaction time. Mechanistic investigations show that the mono-alkylated ring-fused quinazolinones is constructed by the key process of 1,2-hydrogen shift, whereas the di-alkylated ring-fused quinazolinones is mainly achieved through crucial steps of resonance and proton transfer. This protocol is the first example of remote second alkylation on the aromatic ring via α-C(sp3 )-H functionalization and difunctionalization achieved by association of two unsaturated bonds in radical cyclization.
Collapse
Affiliation(s)
- Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei-Kang Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Hui Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guo-Ping Ge
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425100, China
| | - Rongnan Yi
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
11
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
12
|
Ghouse AM, Akondi SM. Dicarbofunctionalization of unactivated alkenes via organo-photoredox catalysis in water: access to cyanoalkylated fused quinazolinones. Org Biomol Chem 2023. [PMID: 37334961 DOI: 10.1039/d3ob00716b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A visible light-induced C-C bond cleavage/addition/cyclization cascade of oxime esters and unactivated alkenes has been developed using water as the solvent. This green protocol offers an easy access to medicinally valuable cyanoalkylated quinazolinones. Mild reaction conditions, functional group tolerance and late-stage functionalization of complex molecules are the important features of this transformation.
Collapse
Affiliation(s)
- Abuthayir Mohamathu Ghouse
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Yang Z, Wu X, Zhang J, Yu JT, Pan C. Metal-Free Photoinduced Hydrocyclization of Unactivated Alkenes toward Ring-Fused Quinazolin-4(3 H)-ones via Intermolecular Hydrogen Atom Transfer. Org Lett 2023; 25:1683-1688. [PMID: 36883803 DOI: 10.1021/acs.orglett.3c00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A visible-light-induced hydrocyclization of unactivated alkenes was developed using 3CzClIPN as the photocatalyst to generate substituted α-methyldeoxyvasicinones and α-methylmackinazolinones in moderate to good yields. An intermolecular hydrogen atom transfer with THF as the hydrogen source was involved. Mechanism studies indicated that the intramolecular addition of the in situ formed aminal radical to the unactivated alkene generated the polycyclic quinazolinone.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jie Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.,School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
14
|
Yuan JW, Zhang MY, Liu Y, Hu WY, Yang LR, Xiao YM, Diao XQ, Zhang SR, Mao J. Transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes: access to ArCF 2-substituted ring-fused quinazolinones. Org Biomol Chem 2022; 20:9722-9733. [PMID: 36440712 DOI: 10.1039/d2ob01904c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A mild and efficient transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes toward the synthesis of difluorobenzylated polycyclic quinazolinone derivatives with easily accessible α,α-difluoroarylacetic acids has been developed. This transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. This methodology provided a highly attractive access to pharmaceutically valuable ArCF2-containing polycyclic quinazolinones.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei-Yue Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan Liu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Qiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Madhava Reddy M, Desikan R, Naik S, Kumar S, Kumar D T, Priya Doss C G, Sivaramakrishna A. Designing, Synthesis, and Anti-Breast Cancer Activity of a Series of New Quinazolin-4(1H)-one Derivatives. Chem Biodivers 2022; 19:e202200662. [PMID: 36261320 DOI: 10.1002/cbdv.202200662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
The inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) protein could be a promising treatment for breast cancer. In this regard, docking studies were accomplished on various functionalized organic molecules. Among them, several derivatives of quinazolin-4(1H)-one exhibited anti-breast cancer activity and satisfied the drug likeliness properties. Further, the in vitro inhibitory studies by a series of 2-(2-phenoxyquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one molecules showed strong anti-cancer activity than the currently available drug, wortmannin. The MTT cytotoxicity assay was used to predict the anti-proliferative activity of these drugs against MCF-7 cancer cells by inhibiting the PIK3CA protein. The dose-dependent analysis showed a striking decrease in cancer cell viability at 24 h with inhibitory concentrations (IC50 ) of 3b, 3c, 3d, 3f and 3m are 15±1, 17±1, 8±1, 10±1 and 60±1 (nanomoles), respectively. This is the first report in the literature on the inhibition of PIK3CA protein by quinazolinone derivatives that can be used in the treatment of cancer. Quinazolinone analogs have the potential to be safe and economically feasible scaffolds if they are produced using a chemical technique that is both straightforward and amenable to modification. From the cancer research perspective, this study can eventually offer better care for cancer patients.
Collapse
Affiliation(s)
- Manne Madhava Reddy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rajagopal Desikan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sanjay Naik
- Center for Bioseparation Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sanjit Kumar
- Center for Bioseparation Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumal Kumar D
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
16
|
Zhang JH, Jiang LL, Hu SJ, Li JZ, Yu XC, Liu FL, Guan YT, Lei KW, Wei WT. The polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs. Org Biomol Chem 2022; 20:7067-7070. [PMID: 35993972 DOI: 10.1039/d2ob01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel polychloromethylation/acyloxylation of 1,6-enynes with chloroalkanes and diacyl peroxides through dual-role designs has been developed to prepare 2-pyrrolidinone derivatives with polychloromethyl units with the use of an inexpensive copper salt under mild conditions. This strategy includes two dual-role designs, not only improving atomic utilization but also allowing a cleaner process. The wide substrate scope and simple reaction conditions demonstrate the practicability of this protocol.
Collapse
Affiliation(s)
- Jun-Hao Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Li-Lin Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Sen-Jie Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xuan-Chi Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Fa-Liang Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yu-Tao Guan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ke-Wei Lei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
17
|
Shan Y, Yang Z, Yu JT, Pan C. Metal-free polychloromethyl radical-initiated cyclization of unactivated N-allylindoles towards pyrrolo[1,2- a]indoles. Org Biomol Chem 2022; 20:5259-5263. [PMID: 35735246 DOI: 10.1039/d2ob00471b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A metal-free polychloromethyl radical-initiated cyclization of unactivated alkenes was developed using CH2Cl2 and CHCl3 as the di- and trichloromethyl radical sources. Variously substituted N-allyl-indoles were successfully transformed into the corresponding C2-(di- and trichloromethyl) pyrrolo[1,2-a]indoles in moderate to good yields. This reaction has a broad substrate scope and good functional group tolerance. Dibromomethylated products can also be obtained using CH2Br2 under standard conditions.
Collapse
Affiliation(s)
- Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
18
|
Zhang WK, Li JZ, Zhang CC, Zhang J, Zheng YN, Hu Y, Li T, Wei WT. The Synthesis of Polycyclic Quinazolinones via C(sp3)–H Functionalization of Inert Alkanes or Visible‐light Promoted Oxidation Decarboxylation of N‐hydroxyphthalimide (NHP‐esters). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Ting Li
- Nanyang Normal University chemistry CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
19
|
Li JN, Li ZJ, Shen LY, Li P, Zhang Y, Yang WC. Selective polychloromethylation and halogenation of alkynes with polyhaloalkanes. Org Biomol Chem 2022; 20:6659-6666. [DOI: 10.1039/d2ob01053d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclosed a selective polychloromethylation and halogenation reaction of alkynes via a radical addition/spirocyclization cascade sequence, in which applying polyhaloalkanes as the precursor of polyhalomethyl and halogen radical. Across this...
Collapse
|