1
|
Yan Y, Hao J, Peng Y, Yin M, Jing L, Han P. Electrochemical benzylic deuteration of p-QMs enabling the synthesis of benzylic deuterated diarylmethanes. Org Biomol Chem 2024; 22:4047-4051. [PMID: 38712523 DOI: 10.1039/d4ob00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Herein, electroreductive umpolung benzylic deuteration of p-QMs using cheap and easily accessible D2O as a deuterium source is reported. Various value-added benzylic deuterated diarylmethanes can be synthesized without the requirement of noble metal catalysts, redox reagents, and strong bases. The establishment of this protocol will provide an alternative strategy for acquiring benzylic deuterated diarylmethanes.
Collapse
Affiliation(s)
- Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yulin Peng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
2
|
Senapati SK, Pal A, Das A. Facile synthesis of tetrahydroquinoline containing dithiocarbamate derivatives via one-pot sequential multicomponent reaction. Org Biomol Chem 2024; 22:4041-4046. [PMID: 38700439 DOI: 10.1039/d4ob00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An efficient sequential multi-component method for the synthesis of tetrahydroquinoline containing dithiocarbamates has been developed. This reaction involved a boronic acid-catalysed reduction of quinolines to tertrahydroquinolines, followed by nucleophilic addition reaction with carbon disulphide to form dithiocarbamic acids and subsequent S-arylation via external base-free Chan-Evans-Lam coupling in a one-pot operation. The methodology is compatible with a wide variety of functional groups and also useful in the late-stage functionalization of pharmaceuticals. The dual role of the boronic acid as a catalyst (in the reduction of quinolines) and as a reagent (in the S-arylation) has been demonstrated for the first time herein.
Collapse
Affiliation(s)
| | - Anit Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
P H, Hati S, Dey R. S-Alkylation of dithiocarbamates via a hydrogen borrowing reaction strategy using alcohols as alkylating agents. Org Biomol Chem 2023; 21:6360-6367. [PMID: 37489908 DOI: 10.1039/d3ob00958k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Herein, we report an operationally simple, environmentally benign and scalable approach towards the synthesis of S-benzyl/alkyl dithiocarbamates via a hydrogen borrowing reaction between alcohols and dithiocarbamate anions catalyzed using a hydroxyapatite-supported copper nano-catalyst. This strategy has a broad substrate scope and offers high yields of products using inexpensive and readily available alcohols as starting materials. The catalyst was prepared by easy and straightforward methods and analyzed by several analytical techniques, e.g., FESEM, HR-TEM, BET, XRD, EDS, and XPS, demonstrating the anchoring of Cu nanoparticles on hydroxyapatite in the zero oxidation state.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Spandan Hati
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| |
Collapse
|
4
|
Hadj Mohamed A, Pinon A, Lagarde N, Goya Jorge E, Mouhsine H, Msaddek M, Liagre B, Sylla-Iyarreta Veitía M. Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies. Biomolecules 2022; 13:54. [PMID: 36671439 PMCID: PMC9855432 DOI: 10.3390/biom13010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Distinctive structural, chemical, and physical properties make the diarylmethane scaffold an essential constituent of many active biomolecules nowadays used in pharmaceutical, agrochemical, and material sciences. In this work, 33 novel diarylmethane molecules aiming to target colorectal cancer were designed. Two series of functionalized olefinic and aryloxy diarylmethanes were synthesized and chemically characterized. The synthetic strategy of olefinic diarylmethanes involved a McMurry cross-coupling reaction as key step and the synthesis of aryloxy diarylmethanes included an O-arylation step. A preliminarily screening in human colorectal cancer cells (HT-29 and HCT116) and murine primary fibroblasts (L929) allowed the selection, for more detailed analyses, of the three best candidates (10a, 10b and 12a) based on their high inhibition of cancer cell proliferation and non-toxic effects on murine fibroblasts (<100 µM). The anticancer potential of these diarylmethane compounds was then assessed using apoptotic (phospho-p38) and anti-apoptotic (phospho-ERK, phospho-Akt) cell survival signaling pathways, by analyzing the DNA fragmentation capacity, and through the caspase-3 and PARP cleavage pro-apoptotic markers. Compound 12a (2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl) vinyl) pyridine, Z isomer) was found to be the most active molecule. The binding mode to five biological targets (i.e., AKT, ERK-1 and ERK-2, PARP, and caspase-3) was explored using molecular modeling, and AKT was identified as the most interesting target. Finally, compounds 10a, 10b and 12a were predicted to have appropriate drug-likeness and good Absorption, Distribution, Metabolism and Excretion (ADME) profiles.
Collapse
Affiliation(s)
- Ameni Hadj Mohamed
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l’Environnement, Monastir 5019, Tunisia
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Elizabeth Goya Jorge
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Av. de Cureghem 10 (B43b), 4000 Liège, Belgium
| | - Hadley Mouhsine
- Peptinov, Pépinière Paris Santé Cochin, Hôpital Cochin, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Moncef Msaddek
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l’Environnement, Monastir 5019, Tunisia
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
5
|
Madassery GP, M V, Panja S, P H, Dey R. Metal‐Free Synthesis of S‐Aryldithiocarbamates: Aryl C−S Bond Formation at Room Temperature†. ChemistrySelect 2022. [DOI: 10.1002/slct.202202136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Geo Paul Madassery
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 India
| | - Vageesh M
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 India
| | - Subir Panja
- Indian Association for the Cultivation of Science School of Chemical Sciences Jadavpur Kolkata 700032 India
| | - Hima P
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 India
| | - Raju Dey
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 India
| |
Collapse
|