1
|
Torabi M, Nazaruk E, Bilewicz R. Alignment of lyotropic liquid crystals using magnetic nanoparticles improves ionic transport through built-in peptide ion channels. J Colloid Interface Sci 2024; 674:982-992. [PMID: 38964002 DOI: 10.1016/j.jcis.2024.06.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
HYPOTHESIS We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite Fe3O4 nanoparticles (hFe3O4NPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes. EXPERIMENTS In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFe3O4NPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry. FINDINGS Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K+ transporting peptides. This enhancement is achieved through doping with hFe3O4NPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFe3O4NPs, gramicidin incorporation, and the influence of Ca2+ on K+ channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.
Collapse
Affiliation(s)
- Mostafa Torabi
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland.
| |
Collapse
|
2
|
Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Biosci Rep 2022; 42:231373. [PMID: 35638450 PMCID: PMC9272595 DOI: 10.1042/bsr20212051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.
Collapse
|
3
|
Lee D, Ha J, Kang M, Yang Z, Jiang W, Kim BYS. Strategies of Perturbing Ion Homeostasis for Cancer Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- DaeYong Lee
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - JongHoon Ha
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Minjeong Kang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Zhaogang Yang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Betty Y. S. Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
4
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
5
|
Ding X, Chang VHS, Li Y, Li X, Xu H, Ho C, Ho D, Yen Y. Harnessing an Artificial Intelligence Platform to Dynamically Individualize Combination Therapy for Treating Colorectal Carcinoma in a Rat Model. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes of Biomedical Engineering School Shanghai Jiao Tong University Shanghai 200030 China
| | - Vincent H. S. Chang
- Department of Physiology, School of Medicine, College of Medicine Taipei Medical University Taipei 110 Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology Taipei Medical University Taipei 110 Taiwan
| | - Yulong Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes of Biomedical Engineering School Shanghai Jiao Tong University Shanghai 200030 China
| | - Xin Li
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes of Biomedical Engineering School Shanghai Jiao Tong University Shanghai 200030 China
| | - Hongquan Xu
- Department of Statistics University of California Los Angeles CA 90095 USA
| | - Chih‐Ming Ho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science University of California Los Angeles CA 90095 USA
- Department of Mechanical and Aerospace Engineering, Henry Samueli School of Engineering and Applied Science University of California Los Angeles CA 90095 USA
| | - Dean Ho
- The N.1 Institute for Health (N.1) National University of Singapore Singapore 117456
- Department of Biomedical Engineering, NUS Engineering National University of Singapore Singapore 117583
- Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore Singapore 117600
| | - Yun Yen
- The PhD Program for Translational Medicine, College of Medical Science and Technology Taipei Medical University Taipei 110 Taiwan
- Chemical Engineering, Division of Chemistry and Chemical Engineering California Institute of Technology California 91125 USA
| |
Collapse
|
6
|
Wang RQ, Geng J, Sheng WJ, Liu XJ, Jiang M, Zhen YS. The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int 2019; 19:145. [PMID: 31139022 PMCID: PMC6532126 DOI: 10.1186/s12935-019-0862-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/15/2019] [Indexed: 01/10/2023] Open
Abstract
Background Pancreatic cancer stem cells (CSCs), a special population of cells, renew themselves infinitely and resist to various treatment. Gramicidin A (GrA), an ionophore antibiotic derived from microorganism, can form channels across the cell membrane and disrupt cellular ionic homeostasis, leading to cell dysfunction and death. As reported, the ionophore antibiotic salinomycin (Sal) has been proved to kill CSCs effectively. Whether GrA owns the potential as a therapeutic drug for CSCs still remains unknown. This study investigated the effect of GrA on pancreatic CSCs and the mechanism. Methods Tumorsphere formation assay was performed to assess pancreatic CSCs self-renewal potential. In vitro hemolysis assay was determined to test the borderline concentration of GrA. CCK-8 assay was used to detect pancreatic cancer cell proliferation capability. Flow cytometry was performed to detect cell apoptosis and mitochondrial membrane potential. Scanning and transmission electron microscopy was used to observe ultrastructural morphological changes on cell membrane surface and mitochondria, respectively. Western blot analysis was used to determine relative protein expression levels. Immunofluorescence staining was performed to observe CD47 re-distribution. Results GrA at 0.05 μM caused tumorspheres disintegration and decrease in number of pancreatic cancer BxPC-3 and MIA PaCa-2 cells. GrA and Sal both inhibited cancer cell proliferation. The IC50 values of GrA and Sal for BxPC-3 cells were 0.025 μM and 0.363 μM; while for MIA PaCa-2 cells were 0.032 μM and 0.163 μM, respectively. Compared on equal concentrations, the efficacy of GrA was stronger than that of Sal. GrA at 0.1 μM or lower did not cause hemolysis. GrA induced ultrastructural changes, such as the decrease of microvilli-like protrusions on cell surface membrane and the swelling of mitochondria. GrA down-regulated the expression levels of CD133, CD44, and CD47; in addition, CD47 re-distribution was observed on cell surface. Moreover, GrA showed synergism with gemcitabine in suppressing cancer cell proliferation. Conclusions The study found that GrA was highly active against pancreatic CSCs. It indicates that GrA exerts inhibitory effects against pancreatic CSCs associated with CD47 down-regulation, implying that GrA might play a positive role in modulating the interaction between macrophages and tumor cells.
Collapse
Affiliation(s)
- Rui-Qi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan Xili, Beijing, 100050 China
| | - Jing Geng
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan Xili, Beijing, 100050 China
| | - Wei-Jin Sheng
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan Xili, Beijing, 100050 China
| | - Xiu-Jun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan Xili, Beijing, 100050 China
| | - Min Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan Xili, Beijing, 100050 China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tiantan Xili, Beijing, 100050 China
| |
Collapse
|
7
|
Kee T, Weiyan C, Blasiak A, Wang P, Chong JK, Chen J, Yeo BTT, Ho D, Asplund CL. Harnessing CURATE.AI as a Digital Therapeutics Platform by Identifying N‐of‐1 Learning Trajectory Profiles. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Theodore Kee
- Department of Biomedical EngineeringNational University of Singapore Singapore 117583
| | - Chee Weiyan
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 117456
| | - Agata Blasiak
- Department of Biomedical EngineeringNational University of Singapore Singapore 117583
| | - Peter Wang
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 117456
| | - Jordan K. Chong
- Department of Biomedical EngineeringNational University of Singapore Singapore 117583
| | - Jonna Chen
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 117456
| | - B. T. Thomas Yeo
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 117456
- Clinical Imaging Research CentreYong Loo Lin School of MedicineNational University of Singapore Singapore 117599
- Centre for Cognitive NeuroscienceDuke‐NUS Medical SchoolNational University of Singapore Singapore 169857
- Institute for Application of Learning Science and Educational TechnologyNational University of Singapore Singapore 119077
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical School 149 13th St Charlestown MA 02129 USA
| | - Dean Ho
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 117456
- Department of Biomedical EngineeringNational University of Singapore Singapore 117583
- Department of PharmacologyYong Loo Lin School of MedicineBioengineering Institute for Global Health Research and TechnologyNational University of Singapore Singapore 117600
| | - Christopher L. Asplund
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 117456
- Clinical Imaging Research CentreYong Loo Lin School of MedicineNational University of Singapore Singapore 117599
- Centre for Cognitive NeuroscienceDuke‐NUS Medical SchoolNational University of Singapore Singapore 169857
- Institute for Application of Learning Science and Educational TechnologyNational University of Singapore Singapore 119077
- Division of Social SciencesYale‐NUS CollegeNational University of Singapore Singapore 138533
| |
Collapse
|
8
|
Biswas A, Chakraborty K, Dutta C, Mukherjee S, Gayen P, Jan S, Mallick AM, Bhattacharyya D, Sinha Roy R. Engineered Histidine-Enriched Facial Lipopeptides for Enhanced Intracellular Delivery of Functional siRNA to Triple Negative Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4719-4736. [PMID: 30628773 DOI: 10.1021/acsami.8b13794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cytosolic delivery of functional siRNA remains the major challenge to develop siRNA-based therapeutics. Designing clinically safe and effective siRNA transporter to deliver functional siRNA across the plasma and endosomal membrane remains a key hurdle. With the aim of improving endosomal release, we have designed cyclic and linear peptide-based transporters having an Arg-DHis-Arg template. Computational studies show that the Arg-DHis-Arg template is also stabilized by the Arg-His side-chain hydrogen bonding interaction at physiological pH, which dissociates at lower pH. The overall atomistic interactions were examined by molecular dynamics simulations, which indicate that the extent of peptide_siRNA assembly formation depends greatly on physicochemical properties of the peptides. Our designed peptides having the Arg-DHis-Arg template and two lipidic moieties facilitate high yield of intracellular delivery of siRNA. Additionally, unsaturated lipid, linoleic acid moieties were introduced to promote fusogenicity and facilitate endosomal release and cytosolic delivery. Interestingly, such protease-resistant peptides provide serum stability to siRNA and exhibit high efficacy of erk1 and erk2 gene silencing in the triple negative breast cancer (TNBC) cell line. The peptide having two linoleyl moieties demonstrated comparable efficacy with commercial transfection reagent HiPerFect, as evidenced by the erk1 and erk2 gene knockdown experiment. Additionally, our study shows that ERK1/2 silencing siRNA and doxorubicin-loaded gramicidin-mediated combination therapy is more effective than siRNA-mediated gene silencing-based monotherapy for TNBC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dhananjay Bhattacharyya
- Computational Science Division , Saha Institute of Nuclear Physics, Kolkata , 1/AF Bidhannagar , Kolkata 700064 , India
| | | |
Collapse
|