1
|
Wu TC, Lai CL, Sivakumar G, Huang YH, Lai CH. Synthesis of a Multifunctional Glyco-Block Copolymer through Reversible Addition-Fragmentation Chain Transfer Polymerization and Click Chemistry for Enzyme and Drug Loading into MDA-MB-231 Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59746-59759. [PMID: 38108280 DOI: 10.1021/acsami.3c12184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reversible addition-fragmentation chain transfer polymerization has been used in various applications such as preparing nanoparticles, stimulus-responsive polymers, and hydrogels. In this study, the combination of this polymerization method and Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry was used to prepare the multifunctional glyco-diblock copolymer P(PEG-co-AM)-b-PF, which is composed of mannosides for cell targeting, poly(ethylene glycol) (PEG) for biocompatibility, and aryl-aldehyde moieties for enzyme immobilization. The alkyne group in the polymer structure enables the alternation for other azide-conjugated monomers. The stepwise synthesis of the polymers was fully characterized. P(PEG-co-AM)-b-PF was self-assembled into polymeric nanoparticles (BDOX-GOx@NPs) for glucose oxidase immobilization through Schiff base formation and for encapsulating the prodrug of arylboronate-linked doxorubicin (BA-DOX) under optimal conditions. Glucose oxidase in BDOX-GOx@NPs catalyzes glucose oxidation to produce gluconic acid and H2O2, which cause oxidative stress. Glucose oxidase also consumes glucose, causing starvation in cancer cells. The produced H2O2 can selectively activate the anticancer prodrug BA-DOX for chemotherapy. In vitro data indicate that GOx and the prodrug BA-DOX present inside BDOX-GOx@NPs exhibit higher stability than free glucose oxidase with a favorable active DOX release profile. MDA-MB-231 cells, which express mannose receptors, were used to establish a model in this study. The bioactivity of the nanoplatform in the two- and three-dimensional models of MDA-MB-231 cancer cells was investigated to ascertain its antitumor efficacy.
Collapse
Affiliation(s)
- Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiao-Ling Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Govindan Sivakumar
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yung-Hsin Huang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M Saunus
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
3
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
4
|
Choi HS, Ahn GN, Na GS, Cha HJ, Kim DP. A Perfluoropolyether Microfluidic Device for Cell-Based Drug Screening with Accurate Quantitative Analysis. ACS Biomater Sci Eng 2022; 8:4577-4585. [DOI: 10.1021/acsbiomaterials.2c00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hyun Sun Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Gwang-Noh Ahn
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Gi-Su Na
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Mills JA, Humphries J, Simpson JD, Sonderegger SE, Thurecht KJ, Fletcher NL. Modulating Macrophage Clearance of Nanoparticles: Comparison of Small-Molecule and Biologic Drugs as Pharmacokinetic Modifiers of Soft Nanomaterials. Mol Pharm 2022; 19:4080-4097. [PMID: 36069540 DOI: 10.1021/acs.molpharmaceut.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomedicines show benefits in overcoming the limitations of conventional drug delivery systems by reducing side effects, toxicity, and exhibiting enhanced pharmacokinetic (PK) profiles to improve the therapeutic window of small-molecule drugs. However, upon administration, many nanoparticles (NPs) prompt induction of host innate immune responses, which in combination with other clearance pathways such as renal and hepatic, eliminate up to 99% of the administered dose. Here, we explore a drug predosing strategy to transiently suppress the mononuclear phagocyte system (MPS), subsequently improving the PK profile and biological behaviors exhibited by a model NP system [hyperbranched polymers (HBPs)] in an immunocompetent mouse model. In vitro assays allowed the identification of five drug candidates that attenuated cellular association. Predosing of lead compounds chloroquine (CQ) and zoledronic acid (ZA) further showed increased HBP retention within the circulatory system of mice, as shown by both fluorescence imaging and positron emission tomography-computed tomography. Flow cytometric evaluation of spleen and liver tissue cells following intravenous administration further demonstrated that CQ and ZA significantly reduced HBP association with myeloid cells by 23 and 16%, respectively. The results of this study support the use of CQ to pharmacologically suppress the MPS to improve NP PKs.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - James Humphries
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Joshua D Simpson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stefan E Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Fletcher NL, Prior A, Choy O, Humphries J, Huda P, Ghosh S, Houston ZH, Bell CA, Thurecht KJ. Pre-targeting of polymeric nanomaterials to balance tumour accumulation and clearance. Chem Commun (Camb) 2022; 58:7912-7915. [PMID: 35726903 DOI: 10.1039/d2cc02443h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pre-targeting of bispecific antibodies is probed to enhance tumour retention while limiting clearance of administered multifunctional branched PEGylated nanomedicines. The temporal influence of pre-targeting on polymer interaction with tumour cells and tissue is explored using in vitro assays through to preclinical validation.
Collapse
Affiliation(s)
- N L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - A Prior
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - O Choy
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - J Humphries
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - P Huda
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - S Ghosh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - Z H Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - C A Bell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - K J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
7
|
Zhao Y, Liu T, Ardana A, Fletcher NL, Houston ZH, Blakey I, Thurecht KJ. Investigation of a Dual siRNA/Chemotherapy Delivery System for Breast Cancer Therapy. ACS OMEGA 2022; 7:17119-17127. [PMID: 35647423 PMCID: PMC9134248 DOI: 10.1021/acsomega.2c00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Multidrug resistance (MDR) is a problem that is often associated with a poor clinical outcome in chemotherapeutic cancer treatment. MDR may potentially be overcome by utilizing synergistic approaches, such as combining siRNA gene therapy and chemotherapy to target different mechanisms of apoptosis. In this study, a strategy is presented for developing multicomponent nanomedicines using orthogonal and compatible chemistries that lead to effective nanotherapeutics. Hyperbranched polymers were used as drug carriers that contained doxorubicin (DOX), attached via a pH-sensitive hydrazone linkage, and ataxia-telangiectasia mutated (ATM) siRNA, attached via a redox-sensitive disulfide group. This nanomedicine also contained cyanine 5 (Cy5) as a diagnostic tracer as well as in-house developed bispecific antibodies that allowed targeting of the epidermal growth factor receptor (EGFR) present on tumor tissue. Highly efficient coupling of siRNA was achieved with 80% of thiol end-groups on the hyperbranched polymer coupling with siRNA. This attachment was reversible, with the majority of siRNA released in vitro under reducing conditions as desired. In cellular studies, the nanomedicine exhibited increased DNA damage and cancer cell inhibition compared to the individual treatments. Moreover, the nanomedicine has great potential to suppress the metabolism of cancer cells including both mitochondrial respiration and glycolytic activity, with enhanced efficacy observed when targeted to the cell surface protein EGFR. Our findings indicated that co-delivery of ATM siRNA and DOX serves as a more efficient therapeutic avenue in cancer treatment than delivery of the single species and offers a potential route for synergistically enhanced gene therapy.
Collapse
Affiliation(s)
- Yongmei Zhao
- School
of Pharmacy, Nantong University, Nantong 226019 China
| | - Tianqing Liu
- QIMR
Berghofer Medical Research, 300 Herston Rd, Brisbane, QLD 4006 Australia
| | - Aditya Ardana
- Commonwealth
Scientific and Industrial Research Organisation, Parkville Campus, Canberra, ACT, 2601, Australia
| | - Nicholas L. Fletcher
- Centre
for Advanced Imaging, Australian Institute for Bioengineering and
Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science
and Technology and ARC Training Centre in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zachary H. Houston
- Centre
for Advanced Imaging, Australian Institute for Bioengineering and
Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science
and Technology and ARC Training Centre in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Idriss Blakey
- Centre
for Advanced Imaging, Australian Institute for Bioengineering and
Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science
and Technology and ARC Training Centre in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kristofer J. Thurecht
- Centre
for Advanced Imaging, Australian Institute for Bioengineering and
Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science
and Technology and ARC Training Centre in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Zhao Y, Zheng Y, Zhu Y, Zhang Y, Zhu H, Liu T. M1 Macrophage-Derived Exosomes Loaded with Gemcitabine and Deferasirox against Chemoresistant Pancreatic Cancer. Pharmaceutics 2021; 13:pharmaceutics13091493. [PMID: 34575569 PMCID: PMC8472397 DOI: 10.3390/pharmaceutics13091493] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is a malignant disease with high mortality and poor prognosis due to lack of early diagnosis and low treatment efficiency after diagnosis. Although Gemcitabine (GEM) is used as the first-line chemotherapeutic drug, chemoresistance is still the major problem that limits its therapeutic efficacy. Here in this study, we developed a specific M1 macrophage-derived exosome (M1Exo)-based drug delivery system against GEM resistance in pancreatic cancer. In addition to GEM, Deferasirox (DFX) was also loaded into drug carrier, M1Exo, in order to inhibit ribonucleotide reductase regulatory subunit M2 (RRM2) expression via depleting iron, and thus increase chemosensitivity of GEM. The M1Exo nanoformulations combining both GEM and DFX significantly enhanced the therapeutic efficacy on the GEM-resistant PANC-1/GEM cells and 3D tumor spheroids by inhibiting cancer cell proliferation, cell attachment and migration, and chemoresistance to GEM. These data demonstrated that M1Exo loaded with GEM and DFX offered an efficient therapeutic strategy for drug-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Yuanlin Zheng
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Yan Zhu
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Yi Zhang
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
9
|
Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer. J Control Release 2021; 335:369-388. [PMID: 34058270 DOI: 10.1016/j.jconrel.2021.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
In spite of huge developments in cancer treatment, versatile combinational formulations of different chemotherapeutic agents to enhance anticancer activity while reducing systemic toxicity still remains a challenge. In this regard, in the current study, an amphiphilic hyaluronic acid-b-polycaprolactone diblock copolymer was synthesized using "click chemistry". The synthesized copolymer was self-assembled to form polymersomal structures for co-encapsulation of hydrophilic doxorubicin (DOX) and hydrophobic camptothecin (CPT) in their interior aqueous compartment and their bilayer, respectively with 1:10 and 1:1 ratios. The prepared polymersomal combinational formulation surrounded by hyaluronic acid brush as hydrophilic segment, could provide active targeting of the system against CD44 marker expressed on the surface of cancerous cells. The hyaluronic acid shell could also provide flexible chemistry for the conjugation of therapeutic FOXM1-specific DNA aptamer (Forkhead Box M1; against transcription factor FOXM1) on the surface of polymersomes in order to further suppress cancerous cell proliferation. The obtained results demonstrated that the prepared co-formulation provided sustained, controlled release of the entrapped drugs during 200 h. In vitro cytotoxicity experiments on non-small cell lung cancer, A549 and SK-MES-1 cell lines, demonstrated that the co-formulation of DOX and CPT provided synergistic effect and significantly higher cytotoxicity in comparison with free drugs. The cytotoxicity experiment also indicated that the aptamer conjugation on the co-formulations surface could significantly increase the cytotoxicity and induce apoptosis in combination therapy on both A549 and SK-MES-1 cell lines while aptamer-conjugated blank NPs did not show any cytotoxicity which emphasizes on the sensitization capability of the FOXM1 DNA aptamer against non-small cell lung cancer. Furthermore, it was shown that the co-formulation with or without aptamer renders the formulation specific tumor accumulation in vivo 24 h post-administration, assisting the combination synergy observed in vitro to be translated to in vivo antitumor efficacy. This combinatorial delivery platform strongly offers a novel approach for the synergistic controlled transportation of several chemotherapeutics for the treatment of non-small cell lung cancer.
Collapse
|
10
|
Sivaram AJ, Wardiana A, Preethi SSH, Fuchs AV, Howard CB, Fletcher NL, Bell CA, Thurecht KJ. Effect of Chain-End Chemistries on the Efficiency of Coupling Antibodies to Polymers Using Unnatural Amino Acids. Macromol Rapid Commun 2020; 41:e2000294. [PMID: 32935886 DOI: 10.1002/marc.202000294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Indexed: 11/09/2022]
Abstract
Novel conjugates that incorporate strategies for increasing the therapeutic payload, such as targeted polymeric delivery vehicles, have great potential in overcoming limitations of conventional antibody therapies that often exhibit immunogenicity and limited drug loading. Click chemistry has significantly expanded the toolbox of effective strategies for developing hybrid polymer-biomolecule conjugates, however, effective systems require orthogonality between the polymer and biomolecule chemistries to achieve efficient coupling. Here, three cycloaddition-based strategies for antibody conjugation to polymeric carriers are explored and show that a purely radical-based method for polymer synthesis and subsequent biomolecule attachment has a trade-off between coupling efficiency of the antibody and the ability to synthesize polymers with controlled chemical properties. It is shown that careful consideration of both coupling chemistries as well as the potential effect of how this modulates the chemical properties of the polymer nanocarrier should be considered during the development of such systems. The strategies described offer insight into improving conjugate development for therapeutic and theranostic applications. In this system, polymerization using conventional and established reversible addition fragmentation chain transfer (RAFT) agents, followed by multiple post-modification steps, always leads to systems with more defined chemical architectures compared to strategies that utilize alkyne-functional RAFT agents.
Collapse
Affiliation(s)
- Amal J Sivaram
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - S S Hema Preethi
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - Adrian V Fuchs
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
11
|
Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020; 41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Precision polymers as advanced nanomedicines represent an appealing approach for the treatment of otherwise untreatable malignancies. By taking advantage of unique nanomaterial properties and implementing judicious design strategies, polymeric nanomedicines are able to be produced that overcome many barriers to effective treatment. Current key research focus areas anticipated to produce the greatest impact in polymer applications in nanomedicine for oncology include new strategies to achieve "active" targeting, polymeric pro-drug activation, and combinatorial polymer drug delivery approaches in combination with enhanced understanding of complex bio-nano interactions. These approaches, both in isolation or combination, form the next generation of precision nanomedicines with significant anticipated future health outcomes. Of necessity, these approaches will combine an intimate understanding of biological interactions with advanced materials design. This perspectives piece aims to highlight emerging opportunities that promise to be game changers in the nanomedicine oncology field. Discussed herein are current and next generation polymeric nanomedicines with a focus towards structures that are, or could, undergo clinical translation as well as highlight key advances in the field.
Collapse
Affiliation(s)
- Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristian Kempe
- Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|