1
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
2
|
Ma XJ, Wang T, Zhang HM, Shao JQ, Jiang M, Wang H, Zhu HX, Zhou D. Comparison of inhibitory effects and mechanisms of lactonic sophorolipid on different pathogenic bacteria. Front Microbiol 2022; 13:929932. [PMID: 36238587 PMCID: PMC9552708 DOI: 10.3389/fmicb.2022.929932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Crude sophorolipids (SLs) have been proven to perform varying degrees of inhibitory effects on different pathogenic bacteria. However, systematic comparative studies of pure lactonic sophorolipid (LSL) among different types of bacteria are few. In this study, the antibacterial effects and mechanisms of LSL on pathogenic bacteria of Staphylococcus aureus, Lactobacillus sp., Pseudomonas aeruginosa, and Escherichia coli were investigated. Bacteriostatic circle, antibacterial rate, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of LSL on different pathogenic bacteria were measured. Then, the antibacterial mechanisms of LSL on S. aureus and P. aeruginosa were explored using ultrastructural observation, cell membrane permeability analysis, intracellular ATP content determination, and extracellular UV absorption detection. With the minimum MIC and MBC values of 0.05 and 0.20 mg/ml, LSL exhibited the best inhibitory effect against S. aureus, followed by P. aeruginosa. LSL showed no significant inhibitory effect on E. coli and Lactobacillus sp. For both S. aureus and P. aeruginosa, LSL achieved bacteriostatic and bactericidal effects by destroying the cell wall, increasing the permeability of the cell membrane and leading to the flow out of intracellular contents. However, the action mode and action intensity of LSL on the cell wall and membrane of these two bacteria were significantly different. LSL had a greater influence on the cell membrane of S. aureus by “leaking,” while it exhibited a stronger effect on the cell wall of P. aeruginosa by “blasting.” These results contributed to a better understanding of the relationship between LSL and different bacterial cell structures, further suggesting the conclusion that LSL might be used for the targeted treatment of special pathogenic bacteria.
Collapse
Affiliation(s)
- Xiao-jing Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
- *Correspondence: Xiao-jing Ma,
| | - Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hui-min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun-qian Shao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mei Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huai Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
| | - Hui-xia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Ministry of Education, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei, China
| | - Dong Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
- Dong Zhou,
| |
Collapse
|
3
|
Tan P, Tang Q, Xu S, Zhang Y, Fu H, Ma X. Designing Self-Assembling Chimeric Peptide Nanoparticles with High Stability for Combating Piglet Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105955. [PMID: 35285170 PMCID: PMC9109057 DOI: 10.1002/advs.202105955] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Indexed: 05/14/2023]
Abstract
As a novel type of antibiotic alternative, peptide-based antibacterial drug shows potential application prospects attributable to their unique mechanism for lysing the membrane of pathogenic bacteria. However, peptide-based antibacterial drugs suffer from a series of problems, most notably their immature stability, which seriously hinders their application. In this study, self-assembling chimeric peptide nanoparticles (which offer excellent stability in the presence of proteases and salts) are constructed and applied to the treatment of bacterial infections. In vitro studies are used to demonstrate that peptide nanoparticles NPs1 and NPs2 offer broad-spectrum antibacterial activity and desirable biocompatibility, and they retain their antibacterial ability in physiological salt environments. Peptide nanoparticles NPs1 and NPs2 can resist degradation under high concentrations of proteases. In vivo studies illustrate that the toxicity caused by peptide nanoparticles NPs1 and NPs2 is negligible, and these nanoparticles can alleviate systemic bacterial infections in mice and piglets. The membrane permeation mechanism and interference with the cell cycle differ from that of antibiotics and mean that the nanoparticles are at a lower risk of inducing drug resistance. Collectively, these advances may accelerate the development of peptide-based antibacterial nanomaterials and can be applied to the construction of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Peng Tan
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Qi Tang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Shenrui Xu
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yucheng Zhang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Huiyang Fu
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Xi Ma
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|