1
|
Benitez-Amaro A, Garcia E, La Chica Lhoëst MT, Martínez A, Borràs C, Tondo M, Céspedes MV, Caruana P, Pepe A, Bochicchio B, Cenarro A, Civeira F, Prades R, Escola-Gil JC, Llorente-Cortés V. Targeting LDL aggregation decreases atherosclerotic lipid burden in a humanized mouse model of familial hypercholesterolemia: Crucial role of ApoB100 conformational stabilization. Atherosclerosis 2024:118630. [PMID: 39547850 DOI: 10.1016/j.atherosclerosis.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND AIMS Low-density lipoprotein (LDL) aggregation is nowadays considered a therapeutic target in atherosclerosis. DP3, the retro-enantio version of the sequence Gly1127-Cys1140 of LRP1, efficiently inhibits LDL aggregation and foam cell in vitro formation. Here, we investigate whether DP3 modulates atherosclerosis in a humanized ApoB100, LDL receptor (LDLR) knockout mice (Ldlr-/-hApoB100 Tg) and determine the potential LDL-related underlying mechanisms. METHODS Tg mice were fed an HFD for 21 days to induce atherosclerosis and then randomized into three groups that received a daily subcutaneous administration (10 mg/kg) of i) vehicle, ii) DP3 peptide, or iii) a non-active peptide (IP321). The in vivo biodistribution of a fluorescent-labeled peptide version (TAMRA-DP3), and its colocalization with ApoB100 in the arterial intima, was analyzed by imaging system (IVIS) and confocal microscopy. Heart aortic roots were used for atherosclerosis detection and quantification. LDL functionality was analyzed by biochemical, biophysical, molecular, and cellular studies. RESULTS Intimal neutral lipid accumulation in the aortic root was reduced in the DP3-treated group as compared to control groups. ApoB100 in LDLs from the DP3 group exhibited an increased percentage of α-helix secondary structures and decreased immunoreactivity to anti-ApoB100 antibodies. LDL from DP3-treated mice were protected against passive and sphingomyelinase (SMase)-induced aggregation, although they still experienced SMase-induced sphingomyelin phospholysis. In patients with familial hypercholesterolemia (FH), DP3 efficiently inhibited both SMase-induced phospholysis and aggregation. CONCLUSIONS DP3 peptide administration inhibits atherosclerosis by preserving the α-helix secondary structures of ApoB100 in a humanized ApoB100 murine model that mimicks the hallmark of human hypercholesterolemia.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - E Garcia
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - M T La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A Martínez
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - C Borràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - M Tondo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain; Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041, Barcelona, Spain
| | - M V Céspedes
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - P Caruana
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - A Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - B Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - A Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - F Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - R Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - J C Escola-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - V Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Zeroual S, Daoud I, Gaouaoui R, Kherachi R. Polyphenolic Profile and In vitro, In Silico Study of Stem Extracts from J. Maritimus (Juncaceae) Harvested from Eastern Algeria as Potential Anti-Inflammatory and Antioxidant Agents. Chem Biodivers 2024:e202401770. [PMID: 39384371 DOI: 10.1002/cbdv.202401770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Juncus maritimusan extremophilous microorganism speciesknown for its medicinal properties was collected in the Biskra region with the aim of its valorization. The volume size of polyphenols, flavonoids and condensed tannins was performed using the Folin-Ciocalteu method, aluminum trichloride and vanillin respectively. The volume of Polyphenols was 127.73±0.20 μg EAG/mg ES, the volume offlavonoids was 16.42±0.42 μg EQ/mg ES, and the volume ofcondensed tannins was 10.10±0.35 μg EC/mg ES. The results of the antioxidant activity tests using the DPPH and ABTS methods reveal that the ethyl acetate extract had the highest activity in both tests. The results of the in vitro anti-inflammatory activity, using the BSA protein denaturation assay, showed that the percentage of denaturation inhibition wasproportional to the concentration of the extract. At a concentration of 5 mg/mL, the inhibition percentage of the extract were 82.03 % and 80.23 %, respectively,which wereclose tothose of theanti-inflammatory drug Diclofenac.Furthermore, molecular docking simulations indicated that Berberine has high binding affinity to the targets COX-2 and PLA-2 In fact,bioisosteric replacement is being usedto discover new analogs of Berberine. Finally, ADME-Tox predictions demonstrated that this compound and its analogs were not hepatotoxic. This result may lead to the selection ofBerberine and its analogs as active compounds with anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Samir Zeroual
- Laboratory of Genetics, Biotechnology and Valorization of Bio-resources, Faculty of Exact Sciences and Nature Sciences and the Life, University Mohamed Khider, Biskra, Algeria
| | - Ismail Daoud
- University Mohamed Khider, Department of Matter Sciences, BP 145 RP, 07000, Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances., Tlemcen University-Faculty of Science, P.O. Box 119, Tlemcen, Algeria
| | - Randa Gaouaoui
- Laboratory of Genetics, Biotechnology and Valorization of Bio-resources, Faculty of Exact Sciences and Nature Sciences and the Life, University Mohamed Khider, Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Medicinal Chemistry LMCE Laboratory, University of Mohamed Khider Biskra, 07000, Biskra, Algeria
| |
Collapse
|
3
|
La Chica Lhoëst MT, Martinez A, Claudi L, Garcia E, Benitez-Amaro A, Polishchuk A, Piñero J, Vilades D, Guerra JM, Sanz F, Rotllan N, Escolà-Gil JC, Llorente-Cortés V. Mechanisms modulating foam cell formation in the arterial intima: exploring new therapeutic opportunities in atherosclerosis. Front Cardiovasc Med 2024; 11:1381520. [PMID: 38952543 PMCID: PMC11215187 DOI: 10.3389/fcvm.2024.1381520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.
Collapse
Affiliation(s)
- M. T. La Chica Lhoëst
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Martinez
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - L. Claudi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E. Garcia
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Benitez-Amaro
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Polishchuk
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - J. Piñero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - D. Vilades
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J. M. Guerra
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F. Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - N. Rotllan
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - J. C. Escolà-Gil
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - V. Llorente-Cortés
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
5
|
Benitez-Amaro A, Martínez-Bosch N, Manero-Rupérez N, Claudi L, La Chica Lhoëst MT, Soler M, Ros-Blanco L, Navarro P, Llorente-Cortés V. Peptides against Low Density Lipoprotein (LDL) Aggregation Inhibit Intracellular Cholesteryl Ester Loading and Proliferation of Pancreatic Tumor Cells. Cancers (Basel) 2022; 14:cancers14040890. [PMID: 35205638 PMCID: PMC8869901 DOI: 10.3390/cancers14040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Dyslipidemia is a modifiable risk factor for pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancers. A key component of dyslipidemia is a high level of small and dense low-density lipoproteins (LDLs). These LDLs have a high probability to be entrapped and modified (aggregated) in the extracellular matrix (ECM), becoming a source of cholesterol for tumor cells. However, the effect of aggregated LDLs on tumor progression has been unexplored. The aim of this work was to determine the effect of modified LDLs on intracellular cholesteryl ester/free cholesterol ratio (CE/FC) and cancer cell growth, and the efficacy of peptides designed to inhibit LDL aggregation on these processes. Our results show that aggregated LDL upregulates the intracellular CE/FC ratio and cell growth in pancreatic cancer and that these upregulatory effects were blocked by peptides against LDL aggregation. We propose that anti-LDL aggregation peptides deserve to be further investigated as anti-tumoral strategies. Abstract Dyslipidemia, metabolic disorders and/or obesity are postulated as risk factors for pancreatic ductal adenocarcinoma (PDAC). The majority of patients with these metabolic alterations have low density lipoproteins (LDLs) with increased susceptibility to become aggregated in the extracellular matrix (ECM). LDL aggregation can be efficiently inhibited by low-density lipoprotein receptor-related protein 1 (LRP1)-based peptides. The objectives of this work were: (i) to determine if aggregated LDLs affect the intracellular cholesteryl ester (CE)/free cholesterol (FC) ratio and/or the tumor pancreatic cell proliferation, using sphingomyelinase-modified LDL particles (Aggregated LDL, AgLDL); and (ii) to test whether LRP1-based peptides, highly efficient against LDL aggregation, can interfere in these processes. For this, we exposed human pancreatic cancer cell lines (PANC-1, RWP-1 and Capan-1) to native (nLDL) or AgLDLs in the absence or presence of LRP1-based peptides (DP3) or irrelevant peptides (IP321). Results of thin-layer chromatography (TLC) following lipid extraction indicate that AgLDLs induce a higher intracellular CE/FC ratio than nLDL, and that DP3 but not IP321 counteracts this effect. AgLDLs also increase PANC-1 cell proliferation, which is inhibited by the DP3 peptide. Our results indicate that AgLDL-induced intracellular CE accumulation plays a crucial role in the proliferation of pancreatic tumor cell lines. Peptides with anti-LDL aggregation properties may thus exhibit anti-tumor effects.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.-A.); (L.C.); (M.T.L.C.L.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (M.S.); (L.R.-B.)
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (N.M.-R.)
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (N.M.-R.)
| | - Lene Claudi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.-A.); (L.C.); (M.T.L.C.L.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (M.S.); (L.R.-B.)
| | - Maria Teresa La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.-A.); (L.C.); (M.T.L.C.L.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (M.S.); (L.R.-B.)
| | - Marta Soler
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (M.S.); (L.R.-B.)
| | - Lia Ros-Blanco
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (M.S.); (L.R.-B.)
| | - Pilar Navarro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.-A.); (L.C.); (M.T.L.C.L.)
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain; (N.M.-B.); (N.M.-R.)
- August Pi Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: (P.N.); (V.L.-C.)
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.-A.); (L.C.); (M.T.L.C.L.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (M.S.); (L.R.-B.)
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (P.N.); (V.L.-C.)
| |
Collapse
|
6
|
Orosz F, Vértessy BG. What's in a name? From "fluctuation fit" to "conformational selection": rediscovery of a concept. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:88. [PMID: 34244885 PMCID: PMC8270835 DOI: 10.1007/s40656-021-00442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Rediscoveries are not rare in biology. A recent example is the re-birth of the "fluctuation fit" concept developed by F. B. Straub and G. Szabolcsi in the sixties of the last century, under various names, the most popular of which is the "conformational selection". This theory offers an alternative to the "induced fit" concept by Koshland for the interpretation of the mechanism of protein-ligand interactions. A central question is whether the ligand induces a conformational change (as described by the induced fit model) or rather selects and stabilizes a complementary conformation from a pre-existing equilibrium of various states of the protein (according to the fluctuation fit/conformational selection model). Straub and Szabolcsi's role and the factors hindering the spread of the fluctuation fit theory are discussed in the context of the history of the Hungarian biology in the 1950s and 1960s.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117 Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117 Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, 1111 Hungary
| |
Collapse
|