1
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Dong K, Zhang Y, Ji HR, Guan ZL, Wang DY, Guo ZY, Deng SJ, He BY, Xing JF, You CY. Dexamethasone-Loaded Lipid Calcium Phosphate Nanoparticles Treat Experimental Colitis by Regulating Macrophage Polarization in Inflammatory Sites. Int J Nanomedicine 2024; 19:993-1016. [PMID: 38299194 PMCID: PMC10829593 DOI: 10.2147/ijn.s442369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
Background The M1/M2 polarization of intestinal macrophages exerts an essential function in the pathogenesis of ulcerative colitis (UC), which can be adjusted to alleviate the UC symptoms. Purpose A kind of pH-sensitive lipid calcium phosphate core-shell nanoparticles (NPs), co-loading with dexamethasone (Dex) and its water-soluble salts, dexamethasone sodium phosphate (Dsp), was constructed to comprehensively regulate macrophages in different states towards the M2 phenotype to promote anti-inflammatory effects. Methods Dex and Dsp were loaded in the outer lipid shell and inner lipid calcium phosphate (Cap) core of the LdCaPd NPs, respectively. Then, the morphology of NPs and methods for determining drug concentration were investigated, followed by in vitro protein adsorption, stability, and release tests. Cell experiments evaluated the cytotoxicity, cellular uptake, and macrophage polarization induction ability of NPs. The in vivo distribution and anti-inflammatory effect of NPs were evaluated through a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced BALB/c mice ulcerative colitis model. Results The LdCaPd NPs showed a particle size of about 200 nm and achieved considerable loading amounts of Dex and Dsp. The in vitro and in vivo studies revealed that in the acidic UC microenvironment, the cationic lipid shell of LdCaPd underwent protonated dissociation to release Dex first for creating a microenvironment conducive to M2 polarization. Then, the exposed CaP core was further engulfed by M1 macrophages to release Dsp to restrict the pro-inflammatory cytokines production by inhibiting the activation and function of the nuclear factor kappa-B (NF-κB) through activating the GC receptor and the NF kappa B inhibitor α (I-κBα), respectively, ultimately reversing the M1 polarization to promote the anti-inflammatory therapy. Conclusion The LdCaPd NPs accomplished the sequential release of Dex and Dsp to the UC site and the inflammatory M1 macrophages at this site, promoting the regulation of macrophage polarization to accelerate the remission of UC symptoms.
Collapse
Affiliation(s)
- Kai Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hong Rui Ji
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ze Lin Guan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Yang Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zi Yang Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shu Jing Deng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Bin Yang He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jian Feng Xing
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Cui Yu You
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
3
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Alyami MH, Musallam AA, Ibrahim TM, Mahdy MA, Elnahas HM, Aldeeb RA. The Exploitation of pH-Responsive Eudragit-Coated Mesoporous Silica Nanostructures in the Repurposing of Terbinafine Hydrochloride for Targeted Colon Cancer Inhibition: Design Optimization, In Vitro Characterization, and Cytotoxicity Assessment. Pharmaceutics 2023; 15:2677. [PMID: 38140018 PMCID: PMC10747614 DOI: 10.3390/pharmaceutics15122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Targeted drug delivery is achieving great success in cancer therapy due to its potential to deliver drugs directly to the action site. Terbinafine hydrochloride (TER) is a broad-spectrum anti-fungal drug that has been found to have some potential anti-tumor effects in the treatment of colon cancer. We aimed here to design and develop pH-sensitive Eudragit (Eud)-coated mesoporous silica nanostructures (MSNs) to control drug release in response to changes in pH. The diffusion-supported loading (DiSupLo) technique was applied for loading TER into the MSNs. The formulation was optimized by a D-optimal design, which permits the concurrent assessment of the influence of drug/MSN%, coat concentration, and MSN type on the drug entrapment efficiency (EE) and its release performance. The optimal formula displayed a high EE of 96.49%, minimizing the release in pH 1.2 to 16.15% and maximizing the release in pH 7.4 to 78.09%. The cytotoxicity of the optimal formula on the colon cancer cells HT-29 was higher than it was with TER alone by 2.8-fold. Apoptosis in cancer cells exposed to the optimum formula was boosted as compared to what it was with the plain TER by 1.2-fold and it was more efficient in arresting cells during the G0/G1 and S stages of the cell cycle. Accordingly, the repurposing of TER utilizing Eud/MSNs is a promising technique for targeted colon cancer therapy.
Collapse
Affiliation(s)
- Mohammad H. Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Abeer A. Musallam
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Egypt
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud A. Mahdy
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hanan M. Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Reem A. Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Egypt
| |
Collapse
|
5
|
Asadi M, Salehi Z, Akrami M, Hosseinpour M, Jockenhövel S, Ghazanfari S. 3D printed pH-responsive tablets containing N-acetylglucosamine-loaded methylcellulose hydrogel for colon drug delivery applications. Int J Pharm 2023; 645:123366. [PMID: 37669729 DOI: 10.1016/j.ijpharm.2023.123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
The pH-responsive drug release approach in combination with three-dimensional (3D) printing for colon-specific oral drug administration can address the limitations of current treatments such as orally administered solid tablets. Such existing treatments fail to effectively deliver the right drug dosage to the colon. In order to achieve targeted drug release profiles, this work aimed at designing and producing 3D printed tablet shells using Eudragit® FS100 and polylactic acid (PLA) where the core was filled with 100 µl of N-acetylglucosamine (GlcNAc)-loaded methyl cellulose (MC) hydrogel. To meet the requirements of such tablets, the effects of polymer blending ratios and MC concentrations on physical, thermal, and material properties of various components of the tablets and most importantly in vitro drug release kinetics were investigated. The tablets with 80/20 wt% of Eudragit® FS100/PLA and the drug-loaded hydrogel with 30 mg/ml GlcNAc and 3% w/v MC showed the most promising results having the best printability, processability, and drug release kinetics besides being non-cytotoxic. Manufacturing of these tablets will be the first milestone in shifting from the conventional "one size fits all" approach to personalized medicine where different dosages and various combinations of drugs can be effectively delivered to the inflammation site.
Collapse
Affiliation(s)
- Maryam Asadi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands
| | - Zeinab Salehi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Stefan Jockenhövel
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstrabe 55, 52072 Aachen, Germany.
| |
Collapse
|
6
|
Sohrab SS, Raj R, Nagar A, Hawthorne S, Paiva-Santos AC, Kamal MA, El-Daly MM, Azhar EI, Sharma A. Chronic Inflammation's Transformation to Cancer: A Nanotherapeutic Paradigm. Molecules 2023; 28:molecules28114413. [PMID: 37298889 DOI: 10.3390/molecules28114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riya Raj
- Department of Biochemistry, Bangalore University, Banglore 560056, India
| | - Amka Nagar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, India
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mohammad Amjad Kamal
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics Inc., Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Mai M El-Daly
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ankur Sharma
- Strathclyde Institute of Pharmaceutical and Biomedical Sciences, University of Strathclyde, Glasgow G1 0RE, UK
| |
Collapse
|
7
|
Meka AK, Gopalakrishna A, Iriarte-Mesa C, Rewatkar P, Qu Z, Wu X, Cao Y, Prasadam I, Janjua TI, Kleitz F, Kumeria T, Popat A. Influence of Pore Size and Surface Functionalization of Mesoporous Silica Nanoparticles on the Solubility and Antioxidant Activity of Confined Coenzyme Q10. Mol Pharm 2023. [PMID: 37216314 DOI: 10.1021/acs.molpharmaceut.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coenzyme Q10 is a potent antioxidant that plays an important role in the maintenance of various biochemical pathways of the body and has a wide range of therapeutic applications. However, it has low aqueous solubility and oral bioavailability. Mesoporous silica nanoparticles (MCM-41 and SBA-15 types) exhibiting varying pore sizes and modified with phosphonate and amino groups were used to study the influence of pore structure and surface chemistry on the solubility, in vitro release profile, and intracellular ROS inhibition activity of coenzyme Q10. The particles were thoroughly characterized to confirm the morphology, size, pore profile, functionalization, and drug loading. Surface modification with phosphonate functional groups was found to have the strongest impact on the solubility enhancement of coenzyme Q10 when compared to that of pristine and amino-modified particles. Phosphonate-modified MCM-41 nanoparticles (i.e., MCM-41-PO3) induced significantly higher coenzyme Q10 solubility than the other particles studied. Furthermore, MCM-41-PO3 led to a twofold decrease in ROS generation in human chondrocyte cells (C28/I2), compared to the free drug in a DMSO/DMEM mixture. The results confirmed the significant contribution of small pore size and negative surface charge of MSNs that enable coenzyme Q10 confinement to allow enhanced drug solubility and antioxidant activity.
Collapse
Affiliation(s)
- Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Claudia Iriarte-Mesa
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Prarthana Rewatkar
- Center for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane QLD 4059, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - Xiaoxin Wu
- Center for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane QLD 4059, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - Indira Prasadam
- Center for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Kelvin Grove Campus, Brisbane QLD 4059, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba QLD 4102, Australia
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Woolloongabba QLD 4102, Australia
- School of Materials Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba QLD 4102, Australia
| |
Collapse
|
8
|
Marcelo GA, Montpeyó D, Galhano J, Martínez-Máñez R, Capelo-Martínez JL, Lorenzo J, Lodeiro C, Oliveira E. Development of New Targeted Nanotherapy Combined with Magneto-Fluorescent Nanoparticles against Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24076612. [PMID: 37047582 PMCID: PMC10095016 DOI: 10.3390/ijms24076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The need for non-invasive therapies capable of conserving drug efficiency and stability while having specific targetability against colorectal cancer (CRC), has made nanoparticles preferable vehicles and principal building blocks for the development of complex and multi-action anti-tumoral approaches. For that purpose, we herein report the production of a combinatory anti-tumoral nanotherapy using the production of a new targeting towards CRC lines. To do so, Magneto-fluorescent NANO3 nanoparticles were used as nanocarriers for a combination of the drugs doxorubicin (DOX) and ofloxacin (OFLO). NANO3 nanoparticles’ surface was modified with two different targeting agents, a newly synthesized (anti-CA IX acetazolamide derivative (AZM-SH)) and a commercially available (anti-epidermal growth factor receptor (EGFR), Cetuximab). The cytotoxicity revealed that only DOX-containing nanosystems showed significant and even competitive cytotoxicity when compared to that of free DOX. Interestingly, surface modification with AZM-SH promoted an increased cellular uptake in the HCT116 cell line, surpassing even those functionalized with Cetuximab. The results show that the new target has high potential to be used as a nanotherapy agent for CRC cells, surpassing commercial targets. As a proof-of-concept, an oral administration form of NANO3 systems was successfully combined with Eudragit® enteric coating and studied under extreme conditions.
Collapse
Affiliation(s)
- Gonçalo A. Marcelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - David Montpeyó
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Joana Galhano
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| | - Elisabete Oliveira
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2825-182 Caparica, Portugal
| |
Collapse
|
9
|
Lang Y, Wang B, Chang MW, Sun R, Zhang L. Sandwich-structured electrospun pH-responsive dental pastes for anti-caries. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Djayanti K, Maharjan P, Cho KH, Jeong S, Kim MS, Shin MC, Min KA. Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. Int J Mol Sci 2023; 24:ijms24076349. [PMID: 37047329 PMCID: PMC10094416 DOI: 10.3390/ijms24076349] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
With advances in nanotechnology, nanoparticles have come to be regarded as carriers of therapeutic agents and have been widely studied to overcome various diseases in the biomedical field. Among these particles, mesoporous silica nanoparticles (MSNs) have been investigated as potential nanocarriers to deliver drug molecules to various target sites in the body. This review introduces the physicochemical properties of MSNs and synthesis procedures of MSN-based nanoplatforms. Moreover, we focus on updating biomedical applications of MSNs as a carrier of therapeutic or diagnostic cargo and review clinical trials using silica-nanoparticle-based systems. Herein, on the one hand, we pay attention to the pharmaceutical advantages of MSNs, including nanometer particle size, high surface area, and porous structures, thus enabling efficient delivery of high drug-loading content. On the other hand, we look through biosafety and toxicity issues associated with MSN-based platforms. Based on many reports so far, MSNs have been widely applied to construct tissue engineering platforms as well as treat various diseases, including cancer, by surface functionalization or incorporation of stimuli-responsive components. However, even with the advantageous aspects that MSNs possess, there are still considerations, such as optimizing physicochemical properties or dosage regimens, regarding use of MSNs in clinics. Progress in synthesis procedures and scale-up production as well as a thorough investigation into the biosafety of MSNs would enable design of innovative and safe MSN-based platforms in biomedical fields.
Collapse
|
11
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release 2022; 351:444-455. [PMID: 36184971 DOI: 10.1016/j.jconrel.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
13
|
Liu C, Jiang F, Xing Z, Fan L, Li Y, Wang S, Ling J, Ouyang XK. Efficient Delivery of Curcumin by Alginate Oligosaccharide Coated Aminated Mesoporous Silica Nanoparticles and In Vitro Anticancer Activity against Colon Cancer Cells. Pharmaceutics 2022; 14:1166. [PMID: 35745738 PMCID: PMC9229531 DOI: 10.3390/pharmaceutics14061166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
We designed and synthesized aminated mesoporous silica (MSN-NH2), and functionally grafted alginate oligosaccharides (AOS) on its surface to get MSN-NH2-AOS nanoparticles as a delivery vehicle for the fat-soluble model drug curcumin (Cur). Dynamic light scattering, thermogravimetric analysis, and X-ray photoelectron spectroscopy were used to characterize the structure and performance of MSN-NH2-AOS. The nano-MSN-NH2-AOS preparation process was optimized, and the drug loading and encapsulation efficiencies of nano-MSN-NH2-AOS were investigated. The encapsulation efficiency of the MSN-NH2-Cur-AOS nanoparticles was up to 91.24 ± 1.23%. The pH-sensitive AOS coating made the total release rate of Cur only 28.9 ± 1.6% under neutral conditions and 67.5 ± 1% under acidic conditions. According to the results of in vitro anti-tumor studies conducted by MTT and cellular uptake assays, the MSN-NH2-Cur-AOS nanoparticles were more easily absorbed by colon cancer cells than free Cur, achieving a high tumor cell targeting efficiency. Moreover, when the concentration of Cur reached 50 μg/mL, MSN-NH2-Cur-AOS nanoparticles showed strong cytotoxicity against tumor cells, indicating that MSN-NH2-AOS might be a promising tool as a novel fat-soluble anticancer drug carrier.
Collapse
Affiliation(s)
- Chennan Liu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Fangyuan Jiang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Zifeng Xing
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Yuan Li
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China;
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| |
Collapse
|
14
|
Wang CPJ, Byun MJ, Kim SN, Park W, Park HH, Kim TH, Lee JS, Park CG. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J Control Release 2022; 345:1-19. [DOI: 10.1016/j.jconrel.2022.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
|
15
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
16
|
Cao P, Wang J, Sun B, Rewatkar P, Popat A, Fu C, Peng H, Xu ZP, Li L. Enhanced Mucosal Transport of Polysaccharide-Calcium Phosphate Nanocomposites for Oral Vaccination. ACS APPLIED BIO MATERIALS 2021; 4:7865-7878. [PMID: 35006768 DOI: 10.1021/acsabm.1c00798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral vaccine has attracted much interest, as it can stimulate both mucosal and systemic immunity with noninvasive and good patient compliance. However, the oral vaccine efficiency is strongly constrained by the low absorption of antigens in the small intestine due to the mucosal barriers. Physicochemical characteristics of nanoparticles (NPs) have strong effects on antigen mucosal penetration, helping to improve immune response. However, surface functions of NPs on mucosal transportation have not been clearly understood. In this work, we elaborately investigated how the surface characteristics of mucoadhesive chitosan and its derivant act on oral antigen absorption and immune response. Core-shell chitosan- and o-carboxymethyl chitosan-coated calcium phosphate (CaP) nanocomposites have been fabricated to investigate the surface property effect on protein antigen delivery using the oral route. The interaction between polymer-coated CaP NPs and the intestinal mucosal layer was studied using mucin absorption, NP diffusion through the mucus layer, NP permeability across the epithelium monolayer, and their cellular uptake by antigen presenting cells in detail. Ex vivo mucosa distribution and in vivo oral immunization of polymer-coated CaP nanocomposites were further examined to demonstrate that the surface property of NPs affects CaP diffusion and penetration through the mucosal layer. As expected, OVA orally delivered by polymer-coated CaP nanocomposites improved the response of mucosal immunity compared to antigen OVA itself in vivo.
Collapse
Affiliation(s)
- Pei Cao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Elshaer D, Moniruzzaman M, Ong YT, Qu Z, Schreiber V, Begun J, Popat A. Facile synthesis of dendrimer like mesoporous silica nanoparticles to enhance targeted delivery of interleukin-22. Biomater Sci 2021; 9:7402-7411. [PMID: 34709241 DOI: 10.1039/d1bm01352a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-22 is a multifunctional cytokine with a very short half-life that activates STAT3 and can elicit strong anti-inflammatory effects in the intestine but can induce inflammation in other sites. Several long-circulating IL-22 fusion proteins have been manufactured to date; however, those were associated with adverse effects in other organs limiting their utility for treating intestinal inflammation. Targeted delivery of IL-22 to the intestine could utilize its anti-inflammatory properties and overcome systemic toxicity. Therefore, this study aimed to synthesise large pore mesoporous silica nanoparticles (LPMSN), load recombinant (r)IL-22 in the LPMSN and test its bioactivity in the STAT3 reporter LS174T, wild type LS174T, Caco-2 intestinal epithelial cells, and healthy human colonic organoids. Our data showed one hundred percent loading capacity (w/w) of the synthesised LPMSN, which prolonged IL-22 induced STAT3 luciferase activities in LS174T and p-STAT3 immunofluorescence in Caco-2 cells. LPMSN also stabilized and increased the permeability of rIL-22 across Caco-2 monolayers. Moreover, LPMSN-IL-22 retained the functionality of the cytokine in human colonic organoids. Taken together, these data demonstrate the protection and effective delivery of IL-22 using bio-nanomaterials (LPMSN) that could enable targeted oral delivery of this IL-22.
Collapse
Affiliation(s)
- Dana Elshaer
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yi Theng Ong
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Veronika Schreiber
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
18
|
Parekh K, Hariharan K, Qu Z, Rewatkar P, Cao Y, Moniruzzaman M, Pandey P, Popat A, Mehta T. Tacrolimus encapsulated mesoporous silica nanoparticles embedded hydrogel for the treatment of atopic dermatitis. Int J Pharm 2021; 608:121079. [PMID: 34500058 DOI: 10.1016/j.ijpharm.2021.121079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
Atopic dermatitis (AD) is a repetitive inflammatory skin disorder with limited treatment options. Innovative targeted therapies are gaining significant interest and momentum towards disease control including better ways to deliver drugs topically. Tacrolimus is one such compound which is used to manage moderate to severe AD without causing atrophy which is one of the common side effects of steroids. However, Tacrolimus suffers from poor solubility and retention in the skin when used alone in hydrogel. Therefore, we have prepared Tacrolimus loaded mesoporous silica nanoparticles (TMSNs) to overcome the issues related to its solubility and effective topical delivery. Mesoporous silica nanoparticles (MSNs) were synthesized using sol gel technique and surface functionalized using amino (-NH2+) and phosphonate (-PO3-) groups. Tacrolimus was loaded into MSNs and the particles were characterized for particle size (TEM and DLS), zeta potential (DLS), solubility studies, FTIR, TGA, XRD, BET and cytotoxicity studies. Water solubility of Tacrolimus was increased by 7 folds with phosphonate functionalized MSNs compared to free Tacrolimus. Further the TMSNs were incorporated in to carbopol gel, and the gel formulation was evaluated for various gel characterization tests (pH, spreadability, viscosity), in vitro tests (drug release, permeability studies) and in vivo tests (skin irritation study and efficacy studies) using 1-Fluoro-2,4-dinitrobenzene (DNFB) induced dermatitis in Balb/c mice. Results of in vitro and in vivo study showed that TMSNs loaded gel showed significantly higher amount of Tacrolimus retained (ex vivo - rat skin) and much higher reduction in ear thickness and improved histology (in vivo - in mice). Our data collectively suggest that MSNs incorporated hydrogel as a promising new formulation strategy for topical delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Khushali Parekh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad - 382481, Gujarat, India
| | - Kartik Hariharan
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad - 382481, Gujarat, India
| | - Zhi Qu
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Qld 4102, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Brisbane, Queensland 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Qld 4102, Australia.
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad - 382481, Gujarat, India.
| |
Collapse
|
19
|
Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, Blaskovich MAT. Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles. ACS Biomater Sci Eng 2021; 8:4196-4206. [PMID: 34464089 PMCID: PMC9554870 DOI: 10.1021/acsbiomaterials.1c00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pretomanid and MCC7433, a novel nitroimidazopyrazinone analog, are promising antitubercular agents that belong to the bicyclic nitroimidazole family. Despite possessing high cell permeability, they suffer from poor aqueous solubility and require specialized formulations in order to be orally bioavailable. To address this limitation, we investigated the use of mesoporous silica nanoparticles (MCM-41) as drug carriers. MCM-41 nanoparticles were synthesized using a sol-gel method, and their surface was further modified with amine and phosphonate groups. A simple rotary evaporation method was used to incorporate the compounds of interest into the nanoparticles, leading to a high encapsulation efficiency of ≥86% with ∼10% loading (w/w). An overall significant improvement of solubility was also observed, and the pharmacological activity of pretomanid and MCC7433 was fully retained when tested in vitro against Mycobacterium tuberculosis using these nanocarriers. Amino-functionalized MCM-41 nanoparticles were found to enhance the systemic exposure of MCC7433 in mice (1.3-fold higher Cmax) compared to MCC7433 alone. The current work highlights the potential of using nanoparticles such as mesoporous silica as a carrier for oral delivery of poorly soluble antibacterial agents against tuberculosis.
Collapse
Affiliation(s)
- Chee Wei Ang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,School of Science, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, St Lucia, Queensland 4067, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Mater Research Institute and Translational Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, St Lucia, Queensland 4067, Australia
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, St Lucia, Queensland 4067, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Mater Research Institute and Translational Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, St Lucia, Queensland 4067, Australia
| |
Collapse
|
20
|
Qin T, Yan L, Wang X, Lin S, Zeng Q. Glucose-Responsive Polyelectrolyte Complexes Based on Dendritic Mesoporous Silica for Oral Insulin Delivery. AAPS PharmSciTech 2021; 22:226. [PMID: 34426942 DOI: 10.1208/s12249-021-02088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
The postprandial glycemic regulation is essential for diabetic patients to reduce the risk of long-term microvascular and macrovascular complications. Herein, we designed a glucose-responsive oral insulin delivery system based on polyelectrolyte complexes (PECs) for controlling the increasing postprandial glucose concentrations. Briefly, alginate-g-3-aminophenylboronic acid (ALG-g-APBA) and chitosan-g-3-fluoro-4-carboxyphenylboronic acid (CS-g-FPBA) were wrapped on mesoporous silica (MSN) to form the negative charged ALG-g-APBA@MSN and the positive charged CS-g-FPBA@MSN nanoparticles, with an optimum insulin loading capacity of 124 mg/g and 295 mg/g, respectively. ALG-g-APBA@MSN was further cross-linked with CS-g-FPBA@MSN to form PECs through electrostatic interaction and borate esters. The dense polyelectrolyte network wrapped on MSN was capable of preventing insulin from diffusion and regulating its release. The in vitro insulin release of PECs demonstrated an obvious glucose response profile in different glucose concentrations (0 mg/mL, 2 mg/mL, 5 mg/mL) and presented a switch "on" and "off" release regulation at hyperglycemic or normal state. The CCK-8 assay showed that none of the MSN, ALG-g-APBA@MSN, CS-g-FPBA@MSN, and PECs possessed cytotoxicity to Caco-2 cells. For in vivo tests, the oral PECs exhibited a significant hypoglycemic effect and maintained in the euglycemic levels up to approximately 12 h on diabetic rats. Overall, the PECs directly triggered by postprandial glucose in the intestine have a good potential to be applied in intelligent insulin delivery by the oral route.
Collapse
|
21
|
Bao WL, Wu Q, Hu B, Sun D, Zhao S, Shen X, Cheng H, Shen W. Oral Nanoparticles of SNX10-shRNA Plasmids Ameliorate Mouse Colitis. Int J Nanomedicine 2021; 16:345-357. [PMID: 33488076 PMCID: PMC7814243 DOI: 10.2147/ijn.s286392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Our previous study found that deletion of Sorting nexin 10 (SNX10) can protect against colonic inflammation and pathological damage induced by dextran sulfate sodium (DSS). This inspired us that modulation of SNX10 expression in colonic epithelial cells might represent a promising therapeutic strategy for inflammatory bowel disease (IBD). Methods Effective delivery of siRNA/shRNA to silence genes is a highly sought-after means in the treatment of multiple diseases. Here, we encapsulated SNX10-shRNA plasmids (SRP) with polylactide-polyglycolide (PLGA) to make oral nanoparticles (NPs), and then applied them to acute and chronic IBD mice model, respectively. The characteristics of the nanoparticles were assayed and the effects of SRP-NPs on mouse IBD were evaluated. Results High-efficiency SNX10-shRNA plasmids were successfully constructed and coated with PLGA to obtain nanoparticles, with a particle size of 275.2 ± 11.4mm, uniform PDI distribution, entrapment efficiency of 87.6 ± 2.5%, and drug loading of 13.11 ± 1.38%, displayed dominant efficiency of SNX10 RNA interference in the colon. In both acute and chronic IBD models, SRP-NPs could effectively reduce the loss of mice body weight, relieve the intestinal mucosal damage and inflammatory infiltration, inhibit the expression of inflammatory cytokines IL-1β, IL-23, TNF-α, and down-regulate the expression of toll-like receptors (TLRs) 2 and 4. Conclusion Oral nanoparticles of SNX10-shRNA plasmid displayed dominant efficiency of SNX10 RNA interference in the colon and ameliorate mouse colitis via TLR signaling pathway. SNX10 is a new target for IBD treatment and nanoparticles of SNX10-shRNA plasmid might be a promising treatment option for IBD.
Collapse
Affiliation(s)
- Wei-Lian Bao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China.,Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Bin Hu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Dongdong Sun
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Shengnan Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Haibo Cheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Weixing Shen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| |
Collapse
|