1
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Gallardo A, Bogart BM, Dutagaci B. Protein-Nucleic Acid Interactions for RNA Polymerase II Elongation Factors by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:3079-3089. [PMID: 35686985 DOI: 10.1021/acs.jcim.2c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA polymerase II (Pol II) forms a complex with elongation factors to proceed to the elongation stage of the transcription process. In this work, we studied the elongation factor SPT5 and explored the protein-nucleic acid interactions for the isolated systems of KOW1 and KOW4 domains of SPT5 with DNA and RNA, respectively. We performed molecular dynamics (MD) simulations using three commonly used force fields that are CHARMM c36m, AMBER ff14sb, and ff19sb. Simulations showed strong protein-nucleic acid interactions and low electrostatic binding free energies for all force fields used. RNA was found to be highly dynamic with all force fields, while DNA had relatively more stable conformations with the AMBER force fields compared to that with CHARMM. Furthermore, we performed MD simulations of the complete elongation complex using CHARMM c36m and AMBER ff19sb force fields to compare the dynamics and interactions with the isolated systems. Similarly, strong KOW1 and DNA interactions were observed in the complete elongation complex simulations and DNA was further stabilized by a network of interactions involving SPT5-KOW1, SPT4, and rpb2 of Pol II. Overall, our study showed that the differences between CHARMM and AMBER force fields strongly affect the dynamics of the nucleic acids. CHARMM provides highly flexible DNA, while AMBER largely stabilizes the DNA structure. Although the presence of the entire interaction network stabilized the DNA and decreased the differences in the results from the two force fields, the discrepancies of the force fields for smaller systems may reflect their problems in generating accurate dynamics of nucleic acids.
Collapse
Affiliation(s)
- Adan Gallardo
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Brandon M Bogart
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
3
|
Maffeo C, Chou HY, Aksimentiev A. Single-molecule biophysics experiments in silico: Toward a physical model of a replisome. iScience 2022; 25:104264. [PMID: 35521518 PMCID: PMC9062759 DOI: 10.1016/j.isci.2022.104264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
The interpretation of single-molecule experiments is frequently aided by computational modeling of biomolecular dynamics. The growth of computing power and ongoing validation of computational models suggest that it soon may be possible to replace some experiments outright with computational mimics. Here, we offer a blueprint for performing single-molecule studies in silico using a DNA-binding protein as a test bed. We demonstrate how atomistic simulations, typically limited to sub-millisecond durations and zeptoliter volumes, can guide development of a coarse-grained model for use in simulations that mimic single-molecule experiments. We apply the model to recapitulate, in silico, force-extension characterization of protein binding to single-stranded DNA and protein and DNA replacement assays, providing a detailed portrait of the underlying mechanics. Finally, we use the model to simulate the trombone loop of a replication fork, a large complex of proteins and DNA. Coarse-grained model derived from all-atom simulation recapitulates experiments Model reproduces the elastic response to force and exchange dynamics Model reveals structure of intermediate states usually inaccessible to experiment Model applied to viral replisome with trombone loop containing tens of SSB proteins
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Matthews Avenue, Urbana, 61801 IL, USA
| | - Han-Yi Chou
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, 61801 IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Matthews Avenue, Urbana, 61801 IL, USA
- Corresponding author
| |
Collapse
|
4
|
Dallavalle S, Musso L, Cincinelli R, Darwiche N, Gervasoni S, Vistoli G, Guglielmi MB, La Porta I, Pizzulo M, Modica E, Prosperi F, Signorino G, Colelli F, Cardile F, Fucci A, D'Andrea EL, Riccio A, Pisano C. Antitumor activity of novel POLA1-HDAC11 dual inhibitors. Eur J Med Chem 2021; 228:113971. [PMID: 34772529 DOI: 10.1016/j.ejmech.2021.113971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022]
Abstract
Hybrid molecules targeting simultaneously DNA polymerase α (POLA1) and histone deacetylases (HDACs) were designed and synthesized to exploit a potential synergy of action. Among a library of screened molecules, MIR002 and GEM144 showed antiproliferative activity at nanomolar concentrations on a panel of human solid and haematological cancer cell lines. In vitro functional assays confirmed that these molecules inhibited POLA1 primer extension activity, as well as HDAC11. Molecular docking studies also supported these findings. Mechanistically, MIR002 and GEM144 induced acetylation of p53, activation of p21, G1/S cell cycle arrest, and apoptosis. Oral administration of these inhibitors confirmed their antitumor activity in in vivo models. In human non-small cancer cell (H460) xenografted in nude mice MIR002 at 50 mg/kg, Bid (qd × 5 × 3w) inhibited tumor growth (TGI = 61%). More interestingly, in POLA1 inhibitor resistant cells (H460-R9A), the in vivo combination of MIR002 with cisplatin showed an additive antitumor effect with complete disappearance of tumor masses in two animals at the end of the treatment. Moreover, in two human orthotopic malignant pleural mesothelioma xenografts (MM473 and MM487), oral treatments with MIR002 and GEM144 confirmed their significant antitumor activity (TGI = 72-77%). Consistently with recent results that have shown an inverse correlation between POLA1 expression and type I interferon levels, MIR002 significantly upregulated interferon-α in immunocompetent mice.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano, 20133, Italy
| | - Mario B Guglielmi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Ilaria La Porta
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Maddalena Pizzulo
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Elisa Modica
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Federica Prosperi
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Giacomo Signorino
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Fabiana Colelli
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Francesco Cardile
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Alessandra Fucci
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Egildo Luca D'Andrea
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Assunta Riccio
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy
| | - Claudio Pisano
- Biogem, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino(AV), Italy.
| |
Collapse
|
5
|
Cincinelli R, Musso L, Guglielmi MB, La Porta I, Fucci A, Luca D'Andrea E, Cardile F, Colelli F, Signorino G, Darwiche N, Gervasoni S, Vistoli G, Pisano C, Dallavalle S. Novel adamantyl retinoid-related molecules with POLA1 inhibitory activity. Bioorg Chem 2020; 104:104253. [PMID: 32920362 DOI: 10.1016/j.bioorg.2020.104253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023]
Abstract
Atypical retinoids (AR) or retinoid-related molecules (RRMs) represent a promising class of antitumor compounds. Among AR, E-3-(3'-adamantan-1-yl-4'-hydroxybiphenyl-4-yl)acrylic acid (adarotene), has been extensively investigated. In the present work we report the results of our efforts to develop new adarotene-related atypical retinoids endowed also with POLA1 inhibitory activity. The effects of the synthesized compounds on cell growth were determined on a panel of human and hematological cancer cell lines. The most promising compounds showed antitumor activity against several tumor histotypes and increased cytotoxic activity against an adarotene-resistant cell line, compared to the parent molecule. The antitumor activity of a selected compound was evaluated on HT-29 human colon carcinoma and human mesothelioma (MM487) xenografts. Particularly significant was the in vivo activity of the compound as a single agent compared to adarotene and cisplatin, against pleural mesothelioma MM487. No reduction of mice body weight was observed, thus suggesting a higher tolerability with respect to the parent compound adarotene.
Collapse
Affiliation(s)
- Raffaella Cincinelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, Milano 20133, Italy
| | - Claudio Pisano
- Biogem, Research Institute, Ariano Irpino, Avellino, Italy.
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
6
|
Yoo J, Winogradoff D, Aksimentiev A. Molecular dynamics simulations of DNA-DNA and DNA-protein interactions. Curr Opin Struct Biol 2020; 64:88-96. [PMID: 32682257 DOI: 10.1016/j.sbi.2020.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
The all-atom molecular dynamics method can characterize the molecular-level interactions in DNA and DNA-protein systems with unprecedented resolution. Recent advances in computational technologies have allowed the method to reveal the unbiased behavior of such systems at the microseconds time scale, whereas enhanced sampling approaches have matured enough to characterize the interaction free energy with quantitative precision. Here, we describe recent progress toward increasing the realism of such simulations by refining the accuracy of the molecular dynamics force field, and we highlight recent application of the method to systems of outstanding biological interest.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Republic of Korea.
| | - David Winogradoff
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|