1
|
Aslan A, Ari Yuka S. Therapeutic peptides for coronary artery diseases: in silico methods and current perspectives. Amino Acids 2024; 56:37. [PMID: 38822212 PMCID: PMC11143054 DOI: 10.1007/s00726-024-03397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Many drug formulations containing small active molecules are used for the treatment of coronary artery disease, which affects a significant part of the world's population. However, the inadequate profile of these molecules in terms of therapeutic efficacy has led to the therapeutic use of protein and peptide-based biomolecules with superior properties, such as target-specific affinity and low immunogenicity, in critical diseases. Protein‒protein interactions, as a consequence of advances in molecular techniques with strategies involving the combined use of in silico methods, have enabled the design of therapeutic peptides to reach an advanced dimension. In particular, with the advantages provided by protein/peptide structural modeling, molecular docking for the study of their interactions, molecular dynamics simulations for their interactions under physiological conditions and machine learning techniques that can work in combination with all these, significant progress has been made in approaches to developing therapeutic peptides that can modulate the development and progression of coronary artery diseases. In this scope, this review discusses in silico methods for the development of peptide therapeutics for the treatment of coronary artery disease and strategies for identifying the molecular mechanisms that can be modulated by these designs and provides a comprehensive perspective for future studies.
Collapse
Affiliation(s)
- Ayca Aslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey
| | - Selcen Ari Yuka
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| |
Collapse
|
2
|
Roy A, Dodd-O JB, Robang AS, He D, West O, Siddiqui Z, Aguas ED, Goldberg H, Griffith A, Heffernan C, Hu Y, Paravastu AK, Kumar VA. Self-Assembling Peptides with Insulin-Like Growth Factor Mimicry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:364-375. [PMID: 38145951 PMCID: PMC11678780 DOI: 10.1021/acsami.3c15660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Growth factor (GF) mimicry involves recapitulating the signaling of larger molecules or cells. Although GF mimicry holds considerable promise in tissue engineering and drug design applications, difficulties in targeting the signaling molecule to the site of delivery and dissociation of mimicking peptides from their target receptors continue to limit its clinical application. To address these challenges, we utilized a self-assembling peptide (SAP) platform to generate synthetic insulin-like growth factor (IGF)-signaling, self-assembling GFs. Our peptide hydrogels are biocompatible and bind target IGF receptors in a dose-dependent fashion, activate proangiogenic signaling, and facilitate formation of angiogenic microtubules in vitro. Furthermore, infiltrated hydrogels are stable for weeks to months. We conclude that the enhanced targeting and long-term stability of our SAP/GF mimicry implants may improve the efficacy and safety of future GF mimic therapeutics.
Collapse
Affiliation(s)
- Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joseph B Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongjing He
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Owen West
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Erika Davidoff Aguas
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08544, United States
| | - Hannah Goldberg
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Corey Heffernan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuhang Hu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| |
Collapse
|