1
|
Andrzejewski J, Das S, Lipik V, Mohanty AK, Misra M, You X, Tan LP, Chang BP. The Development of Poly(lactic acid) (PLA)-Based Blends and Modification Strategies: Methods of Improving Key Properties towards Technical Applications-Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4556. [PMID: 39336298 PMCID: PMC11433319 DOI: 10.3390/ma17184556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
The widespread use of poly(lactic acid) (PLA) from packaging to engineering applications seems to follow the current global trend. The development of high-performance PLA-based blends has led to the commercial introduction of various PLA-based resins with excellent thermomechanical properties. The reason for this is the progress in the field of major PLA limitations such as low thermal resistance and poor impact strength. The main purpose of using biobased polymers in polymer blends is to increase the share of renewable raw materials in the final product rather than its possible biodegradation. However, in the case of engineering applications, the focus is on achieving the required properties rather than maximizing the percentage of biopolymer. The presented review article discusses the current strategies to optimize the balance of the key features such as stiffness, toughness, and heat resistance of PLA-based blends. Improving of these properties requires molecular structural changes, which together with morphology, crystallinity, and the influence of the processing conditions are the main subjects of this article. The latest research in this field clearly indicates the high potential of using PLA-based materials in highly demanding applications. In the case of impact strength modification, it is possible to obtain values close to 800 J/m, which is a value comparable to polycarbonate. Significant improvement can also be confirmed for thermal resistance results, where heat deflection temperatures for selected types of PLA blends can reach even 130 °C after modification. The modification strategies discussed in this article confirm that a properly conducted process of selecting the blend components and the conditions of the processing technique allows for revealing the potential of PLA as an engineering plastic.
Collapse
Affiliation(s)
- Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland;
| | - Subhasis Das
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| | - Vitali Lipik
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| | - Amar K. Mohanty
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.K.M.); (M.M.)
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Manjusri Misra
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.K.M.); (M.M.)
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| | - Boon Peng Chang
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (S.D.); (V.L.)
| |
Collapse
|
2
|
Verma N, S A, Banerjee SS. Development of material extrusion 3D printable ABS/PC polymer blends: influence of styrene–isoprene–styrene copolymer on printability and mechanical properties. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nandishwar Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Aiswarya S
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shib Shankar Banerjee
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
3
|
Ghaffar I, Rashid M, Akmal M, Hussain A. Plastics in the environment as potential threat to life: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56928-56947. [PMID: 35713833 DOI: 10.1007/s11356-022-21542-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plastics have become inevitable for human beings in their daily life. Million tons of plastic waste is entering in oceans, soil, freshwater, and sediments. Invasion of plastics in different ecosystems is causing severe problems to inhabitants. Wild animals such as seabirds, fishes, crustaceans, and other invertebrates are mostly effected by plastic entanglements and organic pollutants absorbed and carried by plastics/microplastics. Plastics can also be potentially harmful to human beings and other mammals. Keeping in view the possible harms of plastics, some mitigation strategies must be adopted which may include the use of bioplastics and some natural polymers such as squid-ring teeth protein. This review focuses on the possible sources of intrusion and fate of plastics in different ecosystems, their potential deleterious effects on wildlife, and the measures that can be taken to minimize and avoid the plastic use.
Collapse
Affiliation(s)
- Imania Ghaffar
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Akmal
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
4
|
Waste Electrical and Electronic Equipment: A Review on the Identification Methods for Polymeric Materials. RECYCLING 2019. [DOI: 10.3390/recycling4030032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Considering that the large quantity of waste electrical and electronic equipment plastics generated annually causes increasing environmental concerns for their recycling and also for preserving of raw material resources, decreasing of energy consumption, or saving the virgin materials used, the present challenge is considered to be the recovery of individual polymers from waste electrical and electronic equipment. This study aims to provide an update of the main identification methods of waste electrical and electronic equipment such as spectroscopic fingerprinting, thermal study, and sample techniques (like identification code and burning test), and the characteristic values in the case of the different analyses of the polymers commonly used in electrical and electronic equipment. Additionally, the quality of the identification is very important, as, depending on this, new materials with suitable properties can be obtained to be used in different industrial applications. The latest research in the field demonstrated that a complete characterization of individual WEEE (Waste Electric and Electronic Equipment) components is important to obtain information on the chemical and physical properties compared to the original polymers and their compounds. The future directions are heading towards reducing the costs by recycling single polymer plastic waste fractions that can replace virgin plastic at a ratio of almost 1:1.
Collapse
|
5
|
Costa VC, Aquino FWB, Paranhos CM, Pereira-Filho ER. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:212-221. [PMID: 28967530 DOI: 10.1016/j.wasman.2017.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%.
Collapse
Affiliation(s)
- Vinicius Câmara Costa
- Grupo de Análise Instrumental Aplicada (GAIA), Departamento de Química (DQ), Universidade Federal de São Carlos (UFSCar), PO Box 676, Zip Code 13565-905, São Carlos, SP, Brazil
| | - Francisco Wendel Batista Aquino
- Grupo de Análise Instrumental Aplicada (GAIA), Departamento de Química (DQ), Universidade Federal de São Carlos (UFSCar), PO Box 676, Zip Code 13565-905, São Carlos, SP, Brazil
| | - Caio Marcio Paranhos
- Laboratório de Polímeros, Departamento de Química (DQ), Universidade Federal de São Carlos (UFSCar), PO Box 676, Zip Code 13565-905, São Carlos, SP, Brazil
| | - Edenir Rodrigues Pereira-Filho
- Grupo de Análise Instrumental Aplicada (GAIA), Departamento de Química (DQ), Universidade Federal de São Carlos (UFSCar), PO Box 676, Zip Code 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Hirayama D, Saron C. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2015; 33:543-549. [PMID: 26022280 DOI: 10.1177/0734242x15584845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers.
Collapse
Affiliation(s)
- Denise Hirayama
- Department of Materials Engineering, University of São Paulo, Lorena, Brazil
| | - Clodoaldo Saron
- Department of Materials Engineering, University of São Paulo, Lorena, Brazil
| |
Collapse
|