1
|
Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. NANOMATERIALS 2020. [DOI: 10.3390/nano10040739 10.1007/978-1-61779-539-8_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Maize is considered one of the most imperative cereal crops worldwide. In this work, high throughput silica nanoparticles (SiO2-NPs) were prepared via the sol–gel technique. SiO2-NPs were attained in a powder form followed by full analysis using the advanced tools (UV-vis, HR-TEM, SEM, XRD and zeta potential). To this end, SiO2-NPs were applied as both nanofertilizer and pesticide against four common pests that infect the stored maize and cause severe damage to crops. As for nanofertilizers, the response of maize hybrid to mineral NPK, “Nitrogen (N), Phosphorus (P), and Potassium (K)” (0% = untreated, 50% of recommended dose and 100%), with different combinations of SiO2-NPs; (0, 2.5, 5, 10 g/kg soil) was evaluated. Afterward, post-harvest, grains were stored and fumigated with different concentrations of SiO2-NPs (0.0031, 0.0063. 0.25, 0.5, 1.0, 2.0, 2.5, 5, 10 g/kg) in order to identify LC50 and mortality % of four common insects, namely Sitophilus oryzae, Rhizopertha dominica, Tribolium castaneum, and Orizaephilus surinamenisis. The results revealed that, using the recommended dose of 100%, mineral NPK showed the greatest mean values of plant height, chlorophyll content, yield, its components, and protein (%). By feeding the soil with SiO2-NPs up to 10 g/kg, the best growth and yield enhancement of maize crop is noticed. Mineral NPK interacted with SiO2-NPs, whereas the application of mineral NPK at the rate of 50% with 10 g/kg SiO2-NPs, increased the highest mean values of agronomic characters. Therefore, SiO2-NPs can be applied as a growth promoter, and in the meantime, as strong unconventional pesticides for crops during storage, with a very small and safe dose.
Collapse
|
2
|
El-Naggar ME, Abdelsalam NR, Fouda MM, Mackled MI, Al-Jaddadi MA, Ali HM, Siddiqui MH, Kandil EE. Soil Application of Nano Silica on Maize Yield and Its Insecticidal Activity Against Some Stored Insects After the Post-Harvest. NANOMATERIALS 2020; 10:nano10040739. [PMID: 32290620 PMCID: PMC7221732 DOI: 10.3390/nano10040739] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
Abstract
Maize is considered one of the most imperative cereal crops worldwide. In this work, high throughput silica nanoparticles (SiO2-NPs) were prepared via the sol-gel technique. SiO2-NPs were attained in a powder form followed by full analysis using the advanced tools (UV-vis, HR-TEM, SEM, XRD and zeta potential). To this end, SiO2-NPs were applied as both nanofertilizer and pesticide against four common pests that infect the stored maize and cause severe damage to crops. As for nanofertilizers, the response of maize hybrid to mineral NPK, "Nitrogen (N), Phosphorus (P), and Potassium (K)" (0% = untreated, 50% of recommended dose and 100%), with different combinations of SiO2-NPs; (0, 2.5, 5, 10 g/kg soil) was evaluated. Afterward, post-harvest, grains were stored and fumigated with different concentrations of SiO2-NPs (0.0031, 0.0063. 0.25, 0.5, 1.0, 2.0, 2.5, 5, 10 g/kg) in order to identify LC50 and mortality % of four common insects, namely Sitophilus oryzae, Rhizopertha dominica, Tribolium castaneum, and Orizaephilus surinamenisis. The results revealed that, using the recommended dose of 100%, mineral NPK showed the greatest mean values of plant height, chlorophyll content, yield, its components, and protein (%). By feeding the soil with SiO2-NPs up to 10 g/kg, the best growth and yield enhancement of maize crop is noticed. Mineral NPK interacted with SiO2-NPs, whereas the application of mineral NPK at the rate of 50% with 10 g/kg SiO2-NPs, increased the highest mean values of agronomic characters. Therefore, SiO2-NPs can be applied as a growth promoter, and in the meantime, as strong unconventional pesticides for crops during storage, with a very small and safe dose.
Collapse
Affiliation(s)
- Mehrez E. El-Naggar
- Pre-Treatment and Finishing of Cellulosic based Fibers Department, Textile Industries Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza 12311, Egypt
- Correspondence: (M.E.E.-N.); (N.R.A.); (M.M.G.F.); Tel.: +20-11-2601-8116 (M.E.E.-N); +20-10-6632-9045 (N.R.A); +20-10-9266-1554 (M.M.G.F.)
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria P.O. Box 21531, Egypt
- Correspondence: (M.E.E.-N.); (N.R.A.); (M.M.G.F.); Tel.: +20-11-2601-8116 (M.E.E.-N); +20-10-6632-9045 (N.R.A); +20-10-9266-1554 (M.M.G.F.)
| | - Moustafa M.G. Fouda
- Pre-Treatment and Finishing of Cellulosic based Fibers Department, Textile Industries Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza 12311, Egypt
- Correspondence: (M.E.E.-N.); (N.R.A.); (M.M.G.F.); Tel.: +20-11-2601-8116 (M.E.E.-N); +20-10-6632-9045 (N.R.A); +20-10-9266-1554 (M.M.G.F.)
| | - Marwa I. Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center (ARC), Sabahia, Alexandria P.O. Box 21616, Egypt;
| | - Malik A.M. Al-Jaddadi
- Ministry of Commerce, Trade and Financial Control Department, Trade Control Department, Division Quality Control, Baghdad 13201, Iraq;
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (M.H.S.)
- Timber Trees Research Department, Sabahia Horticulture Research Station, Horticulture Research Institute, Agriculture Research Center, Alexandria 21526, Egypt
| | - Manzer H. Siddiqui
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (H.M.A.); (M.H.S.)
| | - Essam E. Kandil
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria P.O. Box 21531, Egypt;
| |
Collapse
|
3
|
El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr Polym 2020; 238:116175. [PMID: 32299548 DOI: 10.1016/j.carbpol.2020.116175] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
The current study is pertaining to develop a novel wound dressing, comprising natural biologically absorbable materials for wound healing In-vivo. Wound dressing is composed of Polygalacturonic acid, Hyaluronic acid embedded silver nanoparticles, which is further fabricated to form nanofibrous mat, using electrospinning. Silver nanoparticles was prepared using PGA. AgNPs in this formula will serve as an antioxidant and anti-inflammatory that protect cells from destructive effect of elevated ROS and accelerate wound healing. The physical performance and water contact angle for nanofiber was evaluated. The produced nanofiber was characterized by Fourier-transform infrared (FTIR), scanning electron microscopy and thermal analysis. Also, the embedded AgNPs was also characterized by UV-vis spectroscopy and TEM. The nanofiber mates embedded AgNPs was applied to the wounded site of albino rats in-vivo. Histopathological assessment for the wound was fully performed. Also, the antimicrobial activity for the fabricated wound dressing was evaluated against gram+ve and gram -ve bacteria.
Collapse
Affiliation(s)
- M R El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia; Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt.
| | - Omar M Ibrahim
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt; Department of Medicine and Translational Research, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic-based Fibers Department, Textile Industries Research Division, National Research Center, 33 El- Behooth St, Dokki, Giza, 12311, Egypt.
| | - Nagham G El-Beheri
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Universities and Research Institutes District, Alexandria 21934, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El- Behooth St, Dokki, Giza, 12311, Egypt
| |
Collapse
|
4
|
El-Aassar MR, Masoud MS, Elkady MF, Elzain AA. Synthesis, optimization, and characterization of poly (Styrene-co-Acrylonitrile) copolymer prepared via precipitation polymerization. ADVANCES IN POLYMER TECHNOLOGY 2017. [DOI: 10.1002/adv.21860] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mohamed R. El-Aassar
- Polymer Materials Research Department; Advanced Technology and New Material Institute; City of Scientific Research and Technological Applications (SRTA-City); New Borg El-Arab City Alexandria Egypt
| | - Mamdouh S. Masoud
- Chemistry Department; Faculty of Science; Alexandria University; Ibrahimia Alexandria Egypt
| | - Marwa F. Elkady
- Chemical and Petrochemicals Engineering Department; Engineering Faculty; Egypt-Japan University of Science and Technology; New Borg El-Arab City Alexandria Egypt
- Fabrication Technology Department; Advanced Technology and New Materials Researches Institute; City of Scientific Research and Technological Applications (SRTA-City); New Borg El-Arab City Alexandria Egypt
| | - Ahmed A. Elzain
- Potable Water and Sanitary Drain Holding Co; Marsa Matroh Egypt
| |
Collapse
|
7
|
Fouda MM, El-Aassar M, El Fawal G, Hafez EE, Masry SHD, Abdel-Megeed A. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. Int J Biol Macromol 2015; 74:179-84. [DOI: 10.1016/j.ijbiomac.2014.11.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 01/22/2023]
|