1
|
Fahad M, Shah SU, Saeed MD, Shah KU, Nazir U, Khan NR, Shah KU, Asad M. Fabrication and evaluation of chondroitin sulfate based hydrogels loaded with chitosan nanoparticles for oral delivery of vildagliptin. Int J Biol Macromol 2024; 290:139011. [PMID: 39708883 DOI: 10.1016/j.ijbiomac.2024.139011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Vildagliptin is a drug of choice in type II diabetes mellitus that suffers from limitations like short half-life with reduced bioavailability. To improve the therapeutic performance of vildagliptin, this study aimed to synthesize chitosan nanoparticles (NPs) loaded hydrogel by using biological polysaccharides like sodium alginate (SA) and chondroitin sulfate (CS). The NPs were prepared by ionic gelation method and various characterization tests like surface morphology, size and zeta potential, entrapment efficiency, and in-vitro drug release studies were performed. Results indicated that NPs were round in geometry with an average particle size of 213 nm, having drug encapsulation efficiency of 65 % and controlled drug release within 6-8 h. The optimized NPs (F2) loaded hydrogel showed a good dynamic swelling with gel fraction of 96 %. The hydrogels released 96 % of vildagliptin in 72 h via a non-Fickian diffusion mechanism. The optimized formulation was thermally stable. Formulation showed greater swelling at slight basic pH 7.4 as compared to acidic medium. Moreover, acute toxicity study results demonstrated that the developed NPs loaded hydrogel were safe for oral delivery. The overall results suggested that vildagliptin-loaded NPs loaded hydrogel can serve as an alternative novel dosage form for oral controlled drug delivery.
Collapse
Affiliation(s)
- Muhammad Fahad
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Shefaat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan.
| | - Muhammad Danish Saeed
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Kifayat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Usra Nazir
- Department of biological sciences, NUMS, Islamabad, Pakistan
| | - Nauman Rahim Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of biological sciences, Quaid-i-Azam university, Islamabad, Pakistan
| | - Mohammad Asad
- Center of Excellence for advanced materials research (CEAMR), king Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Khan KU, Akhtar N, Minhas MU. Retraction Note: Poloxamer-407-Co-Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) Cross-linked Nanogels for Solubility Enhancement of Olanzapine: Synthesis, Characterization, and Toxicity Evaluation. AAPS PharmSciTech 2024; 25:43. [PMID: 38383873 DOI: 10.1208/s12249-024-02768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Affiliation(s)
- Kifayat Ullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Naveed Akhtar
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| |
Collapse
|
3
|
Yasmin T, Mahmood A, Farooq M, Rehman U, Sarfraz RM, Ijaz H, Akram MR, Boublia A, Salem Bekhit MM, Ernst B, Benguerba Y. Quince seed mucilage/β-cyclodextrin/Mmt-Na +-co-poly (methacrylate) based pH-sensitive polymeric carriers for controlled delivery of Capecitabine. Int J Biol Macromol 2023; 253:127032. [PMID: 37742901 DOI: 10.1016/j.ijbiomac.2023.127032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In current work, quince seed mucilage and β-Cyclodextrin based pH regulated hydrogels were developed using aqueous free radical polymerization to sustain Capecitabine release patterns and to overcome its drawbacks, such as high dose frequency, short half-life, and low bioavailability. Developed networks were subjected to thermal analysis, Fourier transforms infrared spectroscopy, powder x-ray diffraction, elemental analysis, scanning electron microscopy, equilibrium swelling, and in-vitro release investigations to assess the network system's stability, complexation, morphology, and pH responsiveness. Thermally stable pH-responsive cross-linked networks were formed. Nanocomposite hydrogels were prepared by incorporating Capecitabine-containing clay into the swollen hydrogels. All the formulations exhibited equilibrium swelling ranging from 67.98 % to 92.98 % at pH 7.4. Optimum Capecitabine loading (88.17 %) was noted in the case of hydrogels, while it was 74.27 % in nanocomposite hydrogels. Excellent gel content (65.88 %-93.56 %) was noticed among developed formulations. Elemental analysis ensured the successful incorporation of Capecitabine. Nanocomposite hydrogels released 80.02 % longer than hydrogels after 30 h. NC hydrogels had higher t1/2 (10.57 h), AUC (121.52 μg.h/ml), and MRT (18.95 h) than hydrogels in oral pharmacokinetics. These findings imply that the pH-responsive carrier system may improve Capecitabine efficacy and reduce dosing frequency in cancer therapy. Toxicity profiling proved the system's safety, non-toxicity, and biocompatibility.
Collapse
Affiliation(s)
- Tahira Yasmin
- Faculty of Pharmacy, The University of Lahore, Punjab, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, The University of Lahore, Punjab, Lahore, Pakistan; Department of Pharmacy, University of Chakwal, Pakistan.
| | - Muhammad Farooq
- Faculty of Pharmacy, The University of Lahore, Punjab, Lahore, Pakistan
| | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | | | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Mounir M Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
4
|
Aslam M, Barkat K, Malik NS, Alqahtani MS, Anjum I, Khalid I, Tulain UR, Gohar N, Zafar H, Paiva-Santos AC, Raza F. pH Sensitive Pluronic Acid/Agarose-Hydrogels as Controlled Drug Delivery Carriers: Design, Characterization and Toxicity Evaluation. Pharmaceutics 2022; 14:1218. [PMID: 35745795 PMCID: PMC9229590 DOI: 10.3390/pharmaceutics14061218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to fabricate and evaluate a pH sensitive cross-linked polymeric network through the free radical polymerization technique for the model drug, cyclophosphamide, used in the treatment of non-Hodgkin's lymphoma. The Hydrogels were prepared using a polymeric blend of agarose, Pluronic acid, glutaraldehyde, and methacrylic acid. The prepared hydrogels were characterized for drug loading (%), swelling pattern, release behavior, the ingredient's compatibility, structural evaluation, thermal integrity, and toxicity evaluation in rabbits. The new polymer formation was evident from FTIR findings. The percentage loaded into the hydrogels was in the range of 58.65-75.32%. The developed hydrogels showed significant differences in swelling dynamics and drug release behavior in simulated intestinal fluid (SIF) when compared with simulated gastric fluid (SGF). The drug release was persistent and performed in a controlled manner for up to 24 h. A toxicity study was conducted on white albino rabbits. The developed hydrogels did not show any signs of ocular, skin, or oral toxicity; therefore, these hydrogels can be regarded as safe and potential carriers for controlled drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Mariam Aslam
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (M.A.); (I.A.)
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (M.A.); (I.A.)
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; (N.S.M.); (N.G.)
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Irfan Anjum
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (M.A.); (I.A.)
| | - Ikrima Khalid
- Faculty of Pharmaceutical Sciences, GC University, Faisalabad 38000, Pakistan;
| | - Ume Ruqia Tulain
- Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Nitasha Gohar
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; (N.S.M.); (N.G.)
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai 200240, China;
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Faisal Raza
- Faculty of Pharmacy, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan; (N.S.M.); (N.G.)
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai 200240, China;
| |
Collapse
|
5
|
Abid U, Pervaiz F, Shoukat H, Rehman S, Abid S. Fabrication and characterization of novel semi-IPN hydrogels based on xanthan gum and polyvinyl pyrrolidone-co-poly (2-acrylamido-2-methyl propane sulfonic acid) for the controlled delivery of venlafaxine. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Usman Abid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Abid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
6
|
Formulation and evaluation of polyethylene glycol/Xanthan gum-co-poly (Acrylic acid) interpenetrating network for controlled release of venlafaxine. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Shoukat H, Pervaiz F, Rehman S. Pluronic F127-co-poly (2 acrylamido-2-methylpropane sulphonic acid) crosslinked matrices as potential controlled release carrier for an anti-depressant drug: in vitro and in vivo attributes. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Khan KU, Minhas MU, Sohail M, Badshah SF, Abdullah O, Khan S, Munir A, Suhail M. Synthesis of PEG-4000-co-poly (AMPS) nanogels by cross-linking polymerization as highly responsive networks for enhancement in meloxicam solubility. Drug Dev Ind Pharm 2021; 47:465-476. [PMID: 33651645 DOI: 10.1080/03639045.2021.1892738] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Poor solubility is an ongoing issue and the graph of poorly soluble drugs has increased markedly which critically affect their dissolution, bioavailability, and clinical effects. This common issue needs to be addressed, for this purpose a series of polyethylene glycol (PEG-4000) based nanogels were developed by free radical polymerization technique to enhance the solubility, dissolution, and bioavailability of poorly soluble drug meloxicam (MLX), as improved solubility is the significant application of nanosystems. Developed nanogels formulations were characterized by FTIR, XRD, SEM, zeta sizer, percent equilibrium swelling, drug loaded content (DLC), drug entrapment efficiency (DEE), solubility studies, and in vitro dissolution studies. Furthermore, cytotoxicity studies were conducted in order to determine the bio-compatibility of the nanogels drug delivery system to biological environment. Nanogels particle size was found to be 156.19 ± 09.33 d.nm. Solubility study confirmed that the solubility of poorly soluble drug MLX was significantly enhanced up to 36 folds as compared to reference product (Mobic®). The toxicity study conducted on rabbits and MTT assay endorsed the safety of the developed nanogels formulations to the biological system.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | | | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Science, Hamdard University Islamabad, Islamabad, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,School of Health Sciences, Discipline of Pharmaceutical Sciences, University of Kawazulu Natal, Durban, South Africa
| | - Abubakar Munir
- Department of Pharmacy, Superior University, Lahore, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
9
|
Shklyar TF, Orkhey EA, Safronov AP, Blyakhman FA. Biocompatible contactless electrically responsive hydrogel‐based force maker. POLYM INT 2020. [DOI: 10.1002/pi.6033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tatyana F Shklyar
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| | - Ekaterina A Orkhey
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| | - Alexander P Safronov
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Institute of Electrophysics UB RAS Yekaterinburg Russian Federation
| | - Felix A Blyakhman
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| |
Collapse
|
10
|
Shoukat H, Pervaiz F, Noreen S, Nawaz M, Qaiser R, Anwar M. Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02837-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
khan Z, Minhas MU, Ahmad M, Khan KU, Sohail M, Khalid I. Functionalized pectin hydrogels by cross-linking with monomer: synthesis, characterization, drug release and pectinase degradation studies. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02745-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|