1
|
Remita H, Lampre I. Synthesis of Metallic Nanostructures Using Ionizing Radiation and Their Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:364. [PMID: 38255532 PMCID: PMC10817448 DOI: 10.3390/ma17020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
This paper reviews the radiation-induced synthesis of metallic nanostructures and their applications. Radiolysis is a powerful method for synthesizing metallic nanoparticles in solution and heterogeneous media, and it is a clean alternative to other existing physical, chemical, and physicochemical methods. By varying parameters such as the absorbed dose, dose rate, concentrations of metallic precursors, and nature of stabilizing agents, it is possible to control the size, shape, and morphology (alloy, core-shell, etc.) of the nanostructures and, consequently, their properties. Therefore, the as-synthesized nanoparticles have many potential applications in biology, medicine, (photo)catalysis, or energy conversion.
Collapse
Affiliation(s)
| | - Isabelle Lampre
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France;
| |
Collapse
|
2
|
Menéndez Miranda M, Liu W, Godinez-Leon JA, Amanova A, Houel-Renault L, Lampre I, Remita H, Gref R. Colloidal Silver Nanoparticles Obtained via Radiolysis: Synthesis Optimization and Antibacterial Properties. Pharmaceutics 2023; 15:1787. [PMID: 37513974 PMCID: PMC10383763 DOI: 10.3390/pharmaceutics15071787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) with broad-spectrum antimicrobial properties are gaining increasing interest in fighting multidrug-resistant bacteria. Herein, we describe the synthesis of AgNPs, stabilized by polyvinyl alcohol (PVA), with high purity and homogeneous sizes, using radiolysis. Solvated electrons and reducing radicals are induced from solvent radiolysis and no other chemical reducing agents are needed to reduce the metal ions. Another advantage of this method is that it leads to sterile colloidal suspensions, which can be directly used for medical applications. We systematically investigated the effect of the silver salt precursor on the optical properties, particle size, and morphology of the resulting colloidal AgNPs. With Ag2SO4 precursor, the AgNPs displayed a narrow size distribution (20 ± 2 nm). In contrast, AgNO3 and AgClO4 precursors lead to inhomogeneous AgNPs of various shapes. Moreover, the optimized AgNPs synthesized from Ag2SO4 were stable upon storage in water and phosphate-buffered saline (PBS) and were very effective in inhibiting the growth of Staphylococcus aureus (S. aureus) at a concentration of 0.6 μg·mL-1 while completely eradicating it at a concentration of 5.6 μg·mL-1. When compared with other AgNPs prepared by other strategies, the remarkable bactericidal ability against S. aureus of the AgNPs produced here opens up new perspectives for further applications in medicine, cosmetics, the food industry, or in elaborating antibacterial surfaces and other devices.
Collapse
Affiliation(s)
- Mario Menéndez Miranda
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| | - Wenbo Liu
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| | | | - Aisara Amanova
- Institut de Chimie Physique, CNRS-UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ludivine Houel-Renault
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| | - Isabelle Lampre
- Institut de Chimie Physique, CNRS-UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Hynd Remita
- Institut de Chimie Physique, CNRS-UMR 8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay, CNRS-UMR 8214, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
3
|
Nasef SM, Khozemy EE, Mahmoud GA. pH-responsive chitosan/acrylamide/gold/nanocomposite supported with silver nanoparticles for controlled release of anticancer drug. Sci Rep 2023; 13:7818. [PMID: 37188828 DOI: 10.1038/s41598-023-34870-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, we prepared a pH-responsive nanocomposite hydrogel based on chitosan grafted with acrylamide monomer and gold nanoparticles using gamma irradiation method (Cs-g-PAAm/AuNPs). The nanocomposite was enhanced with a layer coating of silver nanoparticles to improve the controlled release of the anticancer drug fluorouracil while increasing antimicrobial activity and decreasing the cytotoxicity of silver nanoparticles in nanocomposite hydrogel by combining with gold nanoparticles to enhance the ability to kill a high number of liver cancer cells. The structure of the nanocomposite materials was studied using FTIR spectroscopy and XRD patterns, which demonstrated the entrapment of gold and silver nanoparticles within the prepared polymer matrix. Dynamic light scattering data revealed the presence of gold and silver in the nanoscale with the polydispersity indexes in the mid-range values, indicating that distribution systems work best. Swelling experiments at various pH levels revealed that the prepared Cs-g-PAAm/Au-Ag-NPs nanocomposite hydrogels were highly responsive to pH changes. Bimetallic pH-responsive Cs-g-PAAm/Au-Ag-NPs nanocomposites exhibit strong antimicrobial activity. The presence of AuNPs reduced the cytotoxicity of AgNPs while increasing their ability to kill a high number of liver cancer cells.Cs-g-PAAm/Au-Ag-NPs has a high amount of fluorouracil drug loaded at pH 7.4 reaching 95 mg/g with a maximum drug release of 97% within 300 min. Cs-g-PAAm/Au-Ag-NPs have been recommended to use as oral delivery of anticancer drugs because they secure the encapsulated drug in the acidic medium of the stomach and release it in the intestinal pH.
Collapse
Affiliation(s)
- Shaimaa M Nasef
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Ehab E Khozemy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada A Mahmoud
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
4
|
AL-Rajabi MM, Teow YH. Temperature-Responsive Hydrogel for Silver Sulfadiazine Drug Delivery: Optimized Design and In Vitro/In Vivo Evaluation. Gels 2023; 9:329. [PMID: 37102941 PMCID: PMC10137830 DOI: 10.3390/gels9040329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Response surface methodology (RSM) was applied to optimise a temperature-responsive hydrogel formulation synthesised via the direct incorporation of biocellulose, which was extracted from oil palm empty fruit bunches (OPEFB) using the PF127 method. The optimised temperature-responsive hydrogel formulation was found to contain 3.000 w/v% biocellulose percentage and 19.047 w/v% PF127 percentage. The optimised temperature-responsive hydrogel provided excellent LCST near to the human body surface temperature, with high mechanical strength, drug release duration, and inhibition zone diameter against Staphylococcus aureus. Moreover, in vitro cytotoxicity testing against human epidermal keratinocyte (HaCaT) cells was conducted to evaluate the toxicity of the optimised formula. It was found that silver sulfadiazine (SSD)-loaded temperature-responsive hydrogel can be used as a safe replacement for the commercial SSD cream with no toxic effect on HaCaT cells. Last, but not least, in vivo (animal) dermal testing-both dermal sensitization and animal irritation-were conducted to evaluate the safety and biocompatibility of the optimised formula. No sensitization effects were detected on the skin applied with SSD-loaded temperature-responsive hydrogel indicating no irritant response for topical application. Therefore, the temperature-responsive hydrogel produced from OPEFB is ready for the next stage of commercialisation.
Collapse
Affiliation(s)
- Maha Mohammad AL-Rajabi
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Jin SG. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing: A mini review. Chem Asian J 2022; 17:e202200595. [PMID: 36066570 DOI: 10.1002/asia.202200595] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Indexed: 11/11/2022]
Abstract
The development of ideal wound dressing with excellent properties, such as exudate absorption capacity, drug release control ability, and increased wound healing, is currently a major requirement for wound healing. Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has been used in the field of biotechnology such as tissue regeneration, wound dressing, and drug delivery systems. In recent years, PVA-based wound dressing materials have received considerable attention due to their excellent properties such as biodegradability, biocompatibility, non-toxicity and low cost. PVA can be used as a wound dressing material to create the necessary moist wound environment, improve the physical properties of the dressing, and increase the wound healing rates. In addition, PVA can also be mixed with other organic and inorganic materials and can be used for drug delivery and wound healing. This review article addresses the role of biomaterials based on PVA mixed with other ingredients for wound dressing. It also focuses on its recent use in wound dressings as carriers of active substances.
Collapse
Affiliation(s)
- Sung Giu Jin
- Dankook University - Cheonan Campus, Department of Pharmaceutical Engineering, 119 Dandae-ro, Dongnam-gu, 31116, Cheonan, KOREA, REPUBLIC OF
| |
Collapse
|
6
|
Sayed A, Hany F, Abdel-Raouf MES, Mahmoud GA. Gamma irradiation synthesis of pectin- based biohydrogels for removal of lead cations from simulated solutions. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractBio-based hydrogels (denoted as PC-PAAc/GA) comprised of Pectin (PC) and polyacrylic acid (PAAc) reinforced with different ratios of gallic acid (GA) were prepared by gamma radiation at irradiation dose 20 kGy. The prepared hydrogels were investigated by different analytical tools. The swelling performance was studied versus time, pH of the medium and gallic acid content. The experimental data depicted that the swelling increases with pH of medium until the equilibrium of swelling after 350 min. The maximum swelling was attained at pH10 for both PC-PAAc and PC-PAA/GA1.5. Also, the data reveal that the incorporation of GA in the hydrogel matrix enhanced the swelling performance of the hydrogel up to an optimum value of GA, i.e. PC-PAA/GA1.5. Further increase in GA concentration leads to formation of a highly crosslinked structure with reduced swelling. The results demonstrated that the prepared hydrogels displayed excellent antibacterial activity against gram + ve bacteria (E.coli) and gram-ve bacteria (S.aureus). This potent antimicrobial activity is mainly originated from GA which was proved as a strong antibacterial agent. Moreover, the removal performance of the investigated hydrogels was verified towards Pb+2 cation as one of the most poisonous heavy metals. The data revealed that the maximum removal percentage of Pb (II) was attained by PC-PAAc/GA1.5 hydrogel (90 mg g−1). The correlation coefficients of the Langmuir model are too higher than that of the Freundlich model that assumed the adsorption of lead cations is mainly a chemical process.
Collapse
|
7
|
Radiation Synthesis of Green Nanoarchitectonics of Guar Gum-Pectin/Polyacrylamide/Zinc Oxide Superabsorbent Hydrogel for Sustainable Agriculture. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractIn the current study, the performance of superabsorbent hydrogel composites comprised of Guar gum-Pectin/Polyacrylamide/ZnO crosslinked with gamma irradiation (10 kGy) has been investigated for sustainable agriculture. The claimed composites (GG/PC/PAAm/ZnOx) were characterized by FTIR, TGA, and AFM. The swelling capacity data reveal that the equilibrium water swelling (EW) of the composites was increased by increasing the ZnO content from 600 to 1050 g/g for zero to the highest concentration of ZnO, respectively. Furthermore, the physical properties of the soil mixed with the hydrogels were improved; water holding capacity (WHC) increased to 66% and water retention (WR) kept at 15% after 20 days. The composites showed a good degradability in the biodegradation test. They also portrayed super-absorption capacity at three swelling/deswelling cycles. This advancement is important for reducing water consumption through the irrigation of arid lands. The prepared composites were proved as excellent candidates in sustainable agriculture applications.
Collapse
|
8
|
Gad YH, Nasef SM. Radiation synthesis of graphene oxide/composite hydrogels and their ability for potential dye adsorption from wastewater. J Appl Polym Sci 2021. [DOI: 10.1002/app.51220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasser H. Gad
- Department of Radiation Research of Polymer Chemistry National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority Cairo Egypt
| | - Shaimaa M. Nasef
- Department of Radiation Research of Polymer Chemistry National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority Cairo Egypt
| |
Collapse
|
9
|
Synthesis, rheological characterization, and antibacterial activity of polyvinyl alcohol (PVA)/ zinc oxide nanoparticles wound dressing, achieved under electron beam irradiation. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Kaur R, Goyal D, Agnihotri S. Chitosan/PVA silver nanocomposite for butachlor removal: Fabrication, characterization, adsorption mechanism and isotherms. Carbohydr Polym 2021; 262:117906. [DOI: 10.1016/j.carbpol.2021.117906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023]
|
11
|
Smart Hydrogel Bilayers Prepared by Irradiation. Polymers (Basel) 2021; 13:polym13111753. [PMID: 34072009 PMCID: PMC8197863 DOI: 10.3390/polym13111753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Environment-responsive hydrogel actuators have attracted tremendous attention due to their intriguing properties. Gamma radiation has been considered as a green cross-linking process for hydrogel synthesis, as toxic cross-linking agents and initiators were not required. In this work, chitosan/agar/P(N-isopropyl acrylamide-co-acrylamide) (CS/agar/P(NIPAM-co-AM)) and CS/agar/Montmorillonite (MMT)/PNIPAM temperature-sensitive hydrogel bilayers were synthesized via gamma radiation at room temperature. The mechanical properties and temperature sensitivity of hydrogels under different agar content and irradiation doses were explored. The enhancement of the mechanical properties of the composite hydrogel can be attributed to the presence of agar and MMT. Due to the different temperature sensitivities provided by the two layers of hydrogel, they can move autonomously and act as a flexible gripper as the temperature changes. Thanks to the antibacterial properties of the hydrogel, their storage time and service life may be improved. The as prepared hydrogel bilayers have potential applications in control devices, soft robots, artificial muscles and other fields.
Collapse
|
12
|
Baljit Singh, Kumar S, Rajneesh, Mohan M, Divya. Synthesis and Characterization of Psyllium Polysaccharide–Poly(2-hydroxypropyl methacrylate)−Poly(acrylamide) Hydrogels for Use in Sustained Drug Delivery Applications. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420330064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics (Basel) 2020; 9:E56. [PMID: 32024064 PMCID: PMC7168299 DOI: 10.3390/antibiotics9020056] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The epidermal skin barrier protects the body from a host of daily challenges, providing protection against mechanical insults and the absorption of chemicals and xenobiotics. In addition to the physical barrier, the epidermis also presents an innate defense against microbial overgrowth. This is achieved through the presence of a diverse collection of microorganisms on the skin (the "microbiota") that maintain a delicate balance with the host and play a significant role in overall human health. When the skin is wounded, the local tissue with a compromised barrier can become colonized and ultimately infected if bacterial growth overcomes the host response. Wound infections present an immense burden in healthcare costs and decreased quality of life for patients, and treatment becomes increasingly important because of the negative impact that infection has on slowing the rate of wound healing. In this review, we discuss specific challenges of treating wound infections and the advances in drug delivery platforms and formulations that are under development to improve topical delivery of antimicrobial treatments.
Collapse
Affiliation(s)
- R. Smith
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
| | - J. Russo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - J. Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - N. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
- Department of Dermatology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Radiation Synthesis of Superabsorbent Hydrogel (Wheat Flour/Acrylamide) for Removal of Mercury and Lead Ions from Waste Solutions. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01350-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Nasef SM, Khozemy EE, Kamoun EA, El-Gendi H. Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications. Int J Biol Macromol 2019; 137:878-885. [DOI: 10.1016/j.ijbiomac.2019.07.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
|