1
|
Blanco-Rey M, Castrillo R, Ali K, Gargiani P, Ilyn M, Gastaldo M, Paradinas M, Valbuena MA, Mugarza A, Ortega JE, Schiller F, Fernández L. The Role of Rare-Earth Atoms in the Anisotropy and Antiferromagnetic Exchange Coupling at a Hybrid Metal-Organic Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402328. [PMID: 39150001 DOI: 10.1002/smll.202402328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Magnetic anisotropy and magnetic exchange interactions are crucial parameters that characterize the hybrid metal-organic interface, a key component of an organic spintronic device. It is shown that the incorporation of 4f RE atoms to hybrid metal-organic interfaces of CuPc/REAu2 type (RE = Gd, Ho) constitutes a feasible approach toward on-demand magnetic properties and functionalities. The GdAu2 and HoAu2 substrates differ in their magnetic anisotropy behavior. Remarkably, the HoAu2 surface promotes the inherent out-of-plane anisotropy of CuPc, owing to the match between the anisotropy axis of substrate and molecule. Furthermore, the presence of RE atoms leads to a spontaneous antiferromagnetic exchange coupling at the interface, induced by the 3d-4f superexchange interaction between the unpaired 3d electron of CuPc and the 4f electrons of the RE atoms. It is shown that 4f RE atoms with unquenched quantum orbital momentum ( L $L$ ), as it is the case of Ho, induce an anisotropic interfacial exchange coupling.
Collapse
Affiliation(s)
- María Blanco-Rey
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Rodrigo Castrillo
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Khadiza Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Chalmers University of Technology, Göteborg, Göteborg, 412 96, Sweden
| | | | - Maxim Ilyn
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Michele Gastaldo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Markos Paradinas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Miguel A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Madrid, 28049, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- CIC nanoGUNE-BRTA, San Sebastián, 20018, Spain
| |
Collapse
|
2
|
Castrillo-Bodero R, Blanco-Rey M, Ali K, Ortega JE, Schiller F, Fernández L. Tuning the carrier injection barrier of hybrid metal-organic interfaces on rare earth-gold surface compounds. NANOSCALE 2023; 15:4090-4100. [PMID: 36744853 DOI: 10.1039/d2nr06440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic hybrid metal-organic interfaces possess a great potential in areas such as organic spintronics and quantum information processing. However, tuning their carrier injection barriers on-demand is fundamental for the implementation in technological devices. We have prepared hybrid metal-organic interfaces by the adsorption of copper phthalocyanine CuPc on REAu2 surfaces (RE = Gd, Ho and Yb) and studied their growth, electrostatics and electronic structure. CuPc exhibits a long-range commensurability and a vacuum level pinning of the molecular energy levels. We observe a significant effect of the RE valence of the substrate on the carrier injection barrier of the hybrid metal-organic interface. CuPc adsorbed on trivalent RE-based surfaces (HoAu2 and GdAu2) exhibits molecular level energies that may allow injection carriers significantly closer to an ambipolar injection behavior than in the divalent case (YbAu2).
Collapse
Affiliation(s)
- R Castrillo-Bodero
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
| | - M Blanco-Rey
- Universidad del País Vasco UPV/EHU, Dpto. de Polímeros y Materiales Avanzados: Física, Química y Tecnología, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - K Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
- Chalmers University of Technology, Chalmersplatsen 4, Götenborg, 41296, Sweden
| | - J E Ortega
- Universidad del País Vasco UPV/EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - F Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - L Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
| |
Collapse
|
3
|
Fernandez L, Blanco-Rey M, Castrillo-Bodero R, Ilyn M, Ali K, Turco E, Corso M, Ormaza M, Gargiani P, Valbuena MA, Mugarza A, Moras P, Sheverdyaeva PM, Kundu AK, Jugovac M, Laubschat C, Ortega JE, Schiller F. Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds. NANOSCALE 2020; 12:22258-22267. [PMID: 33146198 DOI: 10.1039/d0nr04964f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer.
Collapse
Affiliation(s)
- L Fernandez
- Universidad del País Vasco UPV-EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Blanco-Rey
- Universidad del País Vasco UPV-EHU, Dpto. de Polímeros y Materiales Avanzados: Física, Química y Tecnología, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
| | - R Castrillo-Bodero
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Ilyn
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - K Ali
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - E Turco
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Corso
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Ormaza
- Universidad del País Vasco UPV-EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
| | - P Gargiani
- ALBA Synchrotron Light Source, Carretera BP 1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - M A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- IMDEA Nanociencia, 28049 Madrid, Spain
| | - A Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08070 Barcelona, Spain
| | - P Moras
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - P M Sheverdyaeva
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Asish K Kundu
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - M Jugovac
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - C Laubschat
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - J E Ortega
- Universidad del País Vasco UPV-EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - F Schiller
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
4
|
Que Y, Zhuang Y, Liu Z, Xu C, Liu B, Wang K, Du S, Xiao X. Two-Dimensional Rare Earth-Gold Intermetallic Compounds on Au(111) by Surface Alloying. J Phys Chem Lett 2020; 11:4107-4112. [PMID: 32368917 DOI: 10.1021/acs.jpclett.0c00981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface alloying is a straightforward route to control and modify the structure and electronic properties of surfaces. Here, we present a systematic study on the structural and electronic properties of three novel rare earth-based intermetallic compounds, namely, ReAu2 (Re = Tb, Ho, and Er), on Au(111) via directly depositing rare earth metals onto the hot Au(111) surface. Scanning tunneling microscopy/spectroscopy measurements reveal very similar atomic structures and electronic properties, e.g., electronic states and surface work functions, for all these intermetallic compound systems because of the physical and chemical similarities between these rare earth elements. Further, these electronic properties are periodically modulated by the moiré structures caused by the lattice mismatches between ReAu2 and Au(111). These periodically modulated surfaces could serve as templates for the self-assembly of nanostructures. In addition, these two-dimensional rare earth-based intermetallic compounds provide platforms to investigate rare earth-related catalysis, magnetisms, etc. in the lower dimensions.
Collapse
Affiliation(s)
- Yande Que
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuan Zhuang
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ziyuan Liu
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaoqiang Xu
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bin Liu
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kedong Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xudong Xiao
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
5
|
Samanta A, Podder S, Kumarasamy M, Ghosh CK, Lahiri D, Roy P, Bhattacharjee S, Ghosh J, Mukhopadhyay AK. Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109734. [PMID: 31349529 DOI: 10.1016/j.msec.2019.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
The present work reports the very first hydrothermal synthesis of 100% triclinic phase pure aragonite (A1) with microdumbbell microstructural architecture and Au Nanoparticle-decorated (AuNP-decorated) aragonites (A2, A3 and A4) with spherical, pentagonal/hexagonal and agglomerated AuNP-decorated microdumbbells having triclinic aragonite phase as the major and cubic AuNPs as the minor phase. Even in dark the AuNP-decorated aragonites (especially A2) show efficacies as high 90% against gram-negative e.g., Pseudomonas putida (P. putida) bacteria. Further the AuNP-decorated aragonites (A3) show anti-biofilm capability of as high as about 20% against P. putida. Most importantly the AuNP-decorated aragonites (A3) offer anti-cancer efficacy of as high as 53% while those of A1, A2, and A4 are e.g., 26%, 46% and 37%, respectively. For the very first time, based on detailed investigations, the mechanisms behind such advance antibiofilm and anticancer activities are linked to the generation of excess labile toxic reactive oxygen species (ROS). Thus, these materials show enormous potential as futuristic, multi-functional biomaterials for anti-bacterial, anti-biofilm and anti-cancer applications.
Collapse
Affiliation(s)
- Aniruddha Samanta
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, India; School of Material Science and Nanotechnology, Jadavpur University, India.
| | - Soumik Podder
- School of Material Science and Nanotechnology, Jadavpur University, India
| | - Murali Kumarasamy
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee, India; Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | | - Debrupa Lahiri
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Roorkee, India
| | - Partha Roy
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, India; Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | | | - Jiten Ghosh
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, India.
| | - Anoop Kumar Mukhopadhyay
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute, India.
| |
Collapse
|
6
|
Zhang H, Yang Z, Ju Y, Chu X, Ding Y, Huang X, Zhu K, Tang T, Su X, Hou Y. Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic-Magnetic Ag-Fe@Fe 3O 4 Heterostructures with Reduced Cytotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800271. [PMID: 30128240 PMCID: PMC6096995 DOI: 10.1002/advs.201800271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/08/2018] [Indexed: 05/13/2023]
Abstract
The unique physicochemical properties of silver nanoparticles offer a large potential for biomedical application, however, the serious biotoxicity restricts their usage. Herein, nanogalvanic couple Ag-Fe@Fe3O4 heterostructures (AFHs) are designed to prevent Ag+ release from the cathodic Ag by sacrificial anodic Fe, which can reduce the cytotoxicity of Ag. AFHs are synthesized with modified galvanic displacement strategy in nonaqueous solution. To eliminate the restriction of lattice mismatch between Fe and Ag, amorphous Fe@Fe3O4 nanoparticles (NPs) are selected as seeds, meanwhile, reductive Fe can reduce Ag precursor directly even at as low as 20 °C without additional reductant. The thickness of the Fe3O4 shell can influence the amorphous properties of AFHs, and a series of Janus- and satellite-like AFHs are synthesized. A "cut-off thickness" effect is proposed based on the abnormal phenomenon that with the increase of reaction temperature, the diameter of Ag in AFHs decreases. Because of the interphase interaction and the coupling effect of Ag and Fe@Fe3O4, the AFHs exhibit unique optical and magnetic properties. This strategy for synthesis of monodisperse heterostructures can be extended for other metals, such as Au and Cu.
Collapse
Affiliation(s)
- Huilin Zhang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Ziyu Yang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
- College of Life SciencePeking UniversityBeijing100871China
| | - Xin Chu
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Ya Ding
- State Key Laboratory of Natural MedicinesDepartment of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjing210009China
| | - Xiaoxiao Huang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Kai Zhu
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Tianyu Tang
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Xintai Su
- Department of ChemistrySchool of ScienceZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoeletric Materials and Devices (BKL‐MEMD)Beijing Innovation Center for Engineering Science and Advanced Technology (BIC‐ESAT)Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|