1
|
Mao Z, Peng X, Chen H. Sunlight propelled two-dimensional nanorobots with enhanced mechanical damage of bacterial membrane. WATER RESEARCH 2023; 235:119900. [PMID: 37001231 DOI: 10.1016/j.watres.2023.119900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Bacterial pollution in water sources poses a serious threat to human health and causes a water crisis. To treat it efficiently and ecologically, many studies have explored the antibacterial properties of two-dimensional nanomaterials in water, but their static antibacterial modes limit their effectiveness. In this work, we designed a facile and effective antibacterial nanorobots by loading super small gold nanorods (sAuNR) onto the surface of MXene nanosheets (MXene@sAuNR). The plasmon resonance effect of sAuNR can enhance the optical absorption cross section of the nanorobots, thereby improving their motion ability under irradiation and then causing cell membrane mechanical damage to bacteria. Our research proved that nanorobots with good optical driving characteristics displayed gratifying antibacterial properties even at ultra-low concentration as 5 µg/mL within 30 min. Furthermore, the nanorobots showed satisfactory antibacterial efficiency in real river samples under sunlight irradiation. These nanorobots presented in this study provides valuable insights towards designing self-energy collection and self-driving antibacterial materials that overcome the shortcomings of conventional static antibacterial methods. As sunlight is the cheapest and natural light source, these nanorobots have opened an effective and sustainable way for large-scale treatment of bacterial pollution in water.
Collapse
Affiliation(s)
- Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xinsheng Peng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Miyazaki J, Ishikawa Y, Kondo R. Multiwavelength Photothermal Imaging of Individual Single-Walled Carbon Nanotubes Suspended in a Solvent. J Phys Chem A 2022; 126:5483-5491. [PMID: 35925805 DOI: 10.1021/acs.jpca.2c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical imaging of individual single-walled carbon nanotubes (SWCNTs) enables the characterization of heterogeneous SWCNT samples. However, previous measurement methods have targeted SWCNTs fixed on a substrate. In this study, absorption-contrast imaging of individual SWCNTs moving irregularly in a solvent was performed by simultaneous multiwavelength photothermal (PT) microscopy. Using this technique, heterogeneous samples containing semiconducting and metallic SWCNTs were characterized by absorption spectroscopy. The semiconducting and metallic SWCNTs were visualized in different colors in the obtained multiwavelength images due to their different absorption spectra. Statistical analysis of the multiwavelength signals revealed that semiconducting and metallic SWCNTs could be distinguished with more than 90% accuracy. Time-series PT imaging of the nanotube aggregates induced by salt addition was also conducted by performing single-nanotube measurements. Our study demonstrated that PT microscopy is a versatile technique for determining the composition and degree of aggregation of SWCNTs in liquid and polymeric media, which can promote the industrial application of such materials.
Collapse
Affiliation(s)
- Jun Miyazaki
- Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Yuya Ishikawa
- Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Ryosuke Kondo
- Faculty of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| |
Collapse
|
3
|
Abstract
As one kind of noble metal nanostructures, the plasmonic gold nanostructures possess unique optical properties as well as good biocompatibility, satisfactory stability, and multiplex functionality. These distinctive advantages make the plasmonic gold nanostructures an ideal medium in developing methods for biosensing and bioimaging. In this review, the optical properties of the plasmonic gold nanostructures were firstly introduced, and then biosensing in vitro based on localized surface plasmon resonance, Rayleigh scattering, surface-enhanced fluorescence, and Raman scattering were summarized. Subsequently, application of the plasmonic gold nanostructures for in vivo bioimaging based on scattering, photothermal, and photoacoustic techniques has been also briefly covered. At last, conclusions of the selected examples are presented and an outlook of this research topic is given.
Collapse
|
4
|
Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal Microscopy: Imaging the Optical Absorption of Single Nanoparticles and Single Molecules. ACS NANO 2020; 14:16414-16445. [PMID: 33216527 PMCID: PMC7760091 DOI: 10.1021/acsnano.0c07638] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photothermal (PT) signal arises from slight changes of the index of refraction in a sample due to absorption of a heating light beam. Refractive index changes are measured with a second probing beam, usually of a different color. In the past two decades, this all-optical detection method has reached the sensitivity of single particles and single molecules, which gave birth to original applications in material science and biology. PT microscopy enables shot-noise-limited detection of individual nanoabsorbers among strong scatterers and circumvents many of the limitations of fluorescence-based detection. This review describes the theoretical basis of PT microscopy, the methodological developments that improved its sensitivity toward single-nanoparticle and single-molecule imaging, and a vast number of applications to single-nanoparticle imaging and tracking in material science and in cellular biology.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Patrick Spaeth
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Ashish Kar
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Martin Dieter Baaske
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Saumyakanti Khatua
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Kaushal S, Nanda SS, Yi DK, Ju H. Effects of Aspect Ratio Heterogeneity of an Assembly of Gold Nanorod on Localized Surface Plasmon Resonance. J Phys Chem Lett 2020; 11:5972-5979. [PMID: 32631062 DOI: 10.1021/acs.jpclett.0c01507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We examine the effects of aspect ratio (AR) heterogeneity of an assembly of gold nanorods (GNRs) in a colloid on the total cross-section for its light scattering via localized surface plasmons at visible wavelengths. We observe the extraordinary broadening of the extinction spectrum of light through an assembly of GNRs, a colloidal mixture of those having two different ARs. The interparticle distance estimated as ∼1.2-1.3 μm, being greater than the incident wavelength, allows the radiative dipolar coupling to govern the long-range interaction between GNRs. We find that the coupling enhanced local fields can activate the nonresonant polarization of GNRs to turn into a quasi-resonant one. These higher-order effects for GNR polarization can produce the deviation of total cross-section of GNRs assembly beyond the simple sum of an individual cross-section of GNRs that are assumed to have no such long-range coupling. The extraordinary properties of the extinction spectrum need to be taken into account for modulating the spectral distribution of electromagnetic field in photonic devices where an assembly of GNRs is utilized for field enhancement such as those for surface-enhanced spectroscopy, highly efficient photovoltaics, photothermal nanotherapy, and ultrathin absorption filters.
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry, Myongji University, 17058 Yongin, Republic of Korea
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, 17058 Yongin, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, College of Bionano Technology, Gachon University, 13120 Seongnam, Republic of Korea
| |
Collapse
|
6
|
Li Q, Shi Z, Wu L, Wei H. Resonant scattering-enhanced photothermal microscopy. NANOSCALE 2020; 12:8397-8403. [PMID: 32239001 DOI: 10.1039/c9nr10893a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photothermal (PT) microscopy is currently the most efficient approach for the detection and spectroscopy of individual non-fluorescent nano-objects based solely on their absorption. The nano-objects in current PT microscopy are usually non-resonant with the probe laser light, and the PT signal is mainly generated from the interactions of the incident probe light and the heating light-induced thermal lens around the imaged object. Inspired by the high sensitivity of the scattering field from the nano-objects near optical resonance to the variation in the local refractive index, we developed a novel strategy of resonant scattering-enhanced PT microscopy where the imaged nano-objects are near-resonant with the probe laser light. We have demonstrated this by using gold nanorods (NRs) with tunable longitudinal surface plasmon resonances. The PT signal of gold NR near-resonant with the probe light showed dramatic variation in the narrow resonance wavelength range, as small as 15 nm, and the maximal amplitude of the PT signal in this range can be enhanced up to 43 times as compared with the weak PT signal of gold NR non-resonant with the probe light. Theoretical analysis indicates that the obtained strong PT signal is mainly caused by the heat-induced variation in the polarizability of gold NR. Our novel work demonstrates the first resonant scattering-enhanced PT imaging of plasmonic nanoparticles, paving the way for the development of PT microscopy with ultra-high sensitivity toward the sensing, imaging, and spectroscopy of nanoscopic objects in complex environments.
Collapse
Affiliation(s)
- Qiang Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
| | | | | | | |
Collapse
|
7
|
Dharmalingam P, Venkatakrishnan K, Tan B. Probing Cancer Metastasis at a Single-Cell Level with a Raman-Functionalized Anionic Probe. NANO LETTERS 2020; 20:1054-1066. [PMID: 31904972 DOI: 10.1021/acs.nanolett.9b04288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cancer metastasis is the primary reason for cancer-related deaths, yet there is no technique capable of detecting it due to cancer pathogenesis. Current cancer diagnosis methods evaluate tumor samples as a whole/pooled sample process loses heterogeneous information in the metastasis state. Hence, it is not suitable for metastatic cancer detection. In order to gain complete information on metastasis, it is desirable to develop a nondestructive detection method that can evaluate metastatic cells with sensitivity down to single-cell resolution. Here we demonstrated self-functionalized anionic quantum probes for in vitro metastatic cancer detection at a single-cell concentration. We achieved this by incorporating a nondestructive SERS ability within the generated probes by integrating anionic surface species and NIR plasmon resonance. To the best of our knowledge, this was the first time that metastatic cancer cells were detected through their neoplastic transformations. With reliable diagnostic information at the single-cell sensitivity in an in vitro state, we successfully discriminated against cancer malignancy states.
Collapse
Affiliation(s)
- Priya Dharmalingam
- Institute for Biomedical Engineering, Science and Technology (I-BEST) , Partnership between Ryerson University and St. Michael's Hospital , Toronto , Ontario M5B 1W8 , Canada
| | - Krishnan Venkatakrishnan
- Affiliate Scientist, Keenan Research Center , St. Michael's Hospital , 209 Victoria Street , Toronto , Ontario M5B 1T8 , Canada
| | - Bo Tan
- Affiliate Scientist, Keenan Research Center , St. Michael's Hospital , 209 Victoria Street , Toronto , Ontario M5B 1T8 , Canada
| |
Collapse
|
8
|
Shrestha B, Tang L, Romero G. Nanoparticles‐Mediated Combination Therapies for Cancer Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Liang Tang
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Gabriela Romero
- Department of Chemical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
9
|
Mbalaha Z, Edwards PR, Birch DJ, Chen Y. Synthesis of Small Gold Nanorods and Their Subsequent Functionalization with Hairpin Single Stranded DNA. ACS OMEGA 2019; 4:13740-13746. [PMID: 31497691 PMCID: PMC6714599 DOI: 10.1021/acsomega.9b01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Small gold nanorods have a significantly large absorption/scattering ratio and are especially beneficial in exploiting photothermal effects, for example in photothermal therapy and remote drug release. This work systematically investigates the influence of growth conditions on the size, growth yield, and stability of small gold nanorods. The silver-assisted seed-mediated growth method was optimized to synthesize stable small gold nanorods with a high growth yield (>85%). Further study on the influence of silver ions on the growth facilitates the growth of small gold nanorods with tunable longitudinal surface plasmon resonance from 613 to 912 nm, with average dimensions of 13-25 nm in length and 5-6 nm in diameter. Moreover, the small gold nanorods were successfully functionalized with thiol-modified hairpin oligonucleotides (hpDNA) labeled with Cy5. Fluorescence intensity measurements show an increase in the presence of target DNA and an enhanced signal/background ratio when the longitudinal surface plasmon resonance of small gold nanorods overlaps with the excitation and emission wavelength of Cy5. This coincides with a reduced fluorescence lifetime of Cy5 in the hairpin structure, indicating surface plasmon resonance-enhanced energy transfer to the small gold nanorods. This study may provide insight on the synthesis and functionalization of small gold nanorods in biomedical sensing and therapy.
Collapse
Affiliation(s)
- Zendesha
S. Mbalaha
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - Paul R. Edwards
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - David J.S. Birch
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - Yu Chen
- Department of Physics, Scottish Universities
Physics Alliance, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, U.K.
| |
Collapse
|
10
|
Torresan MF, Angelomé PC, Bazán-Díaz L, Velázquez-Salazar JJ, Mendoza-Cruz R, Iglesias RA, José-Yacamán M. Structural characterization of Au nano bipyramids: reshaping under thermal annealing, the capping agent effect and surface decoration with Pt. NANOTECHNOLOGY 2019; 30:205701. [PMID: 30673656 DOI: 10.1088/1361-6528/ab0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Anisotropic gold nanoparticles offer potential applications due to their functionalities and shape-dependent properties. Reshaping noble metal nanoparticles is an interesting field with optical, surface-enhanced Raman spectroscopy, catalytic applications and potential application as a photothermic therapy. This work comprises a structural study on gold nano bipyramids (Au NBPs) and nanodumbbells, and the evolution of Au NBPs capped with cetyltrimethylammonium bromide and dodecanethiol through an in situ and ex situ heating process in high vacuum. Also, we study the reshaping of Au NBPs by the addition of Pt to study the surface modification and the strain generated on a single particle by geometric phase analysis.
Collapse
Affiliation(s)
- María Fernanda Torresan
- Instituto de Investigaciones en Fisicoquímica de Córdoba, Universidad Nacional de Córdoba, INFIQC CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Pabellón Argentina, Ala 1 Piso 2, Ciudad Universitaria, Córdoba 5000, Argentina. Gerencia Química-Centro Atómico Constituyentes, Comisión Nacional de Energía, Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
An L, Wang Y, Lin J, Tian Q, Xie Y, Hu J, Yang S. Macrophages-Mediated Delivery of Small Gold Nanorods for Tumor Hypoxia Photoacoustic Imaging and Enhanced Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15251-15261. [PMID: 30964253 DOI: 10.1021/acsami.9b00495] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Macrophage-mediated delivery of drugs or nanoparticles has great potential in cancer treatment because it can avoid interception by the immune system and cross the blood-vessel barriers to reach the hypoxic regions of tumors. However, macrophage-based delivery system still faces some great challenges such as low theranostics agent loading capacity and hypoxic regions tendency in vivo. Herein, small gold nanorods (AuNRs) were used as the model theranostics agent to design a macrophage-mediated delivery system with high loading quantity for tumor hypoxia photoacoustic (PA) imaging and enhanced photothermal therapy (PTT). AuNRs modified with various thiolated poly(ethylene glycol)s (HS-PEG) via ligand exchange were investigated for toxicity and cell uptake by macrophages. The tumor hypoxic regions tendency of macrophage-loaded Anionic-AuNRs (Anionic-AuNRs@RAW) were verified by in vivo PA imaging and tumor sections. In vivo systemic PTT demonstrated enhanced tumor inhibition of anionic-AuNRs@RAW. This macrophage-mediated delivery system with high loading capacity could be used to enhance the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , China
| | - Yuanyuan Wang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , China
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , China
| | - Yinxiao Xie
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , China
| | - Junqing Hu
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
12
|
Detection of Intracellular Gold Nanoparticles: An Overview. MATERIALS 2018; 11:ma11060882. [PMID: 29795017 PMCID: PMC6025619 DOI: 10.3390/ma11060882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/10/2023]
Abstract
Photothermal therapy (PTT) takes advantage of unique properties of gold nanoparticles (AuNPs) (nanospheres, nanoshells (AuNSs), nanorods (AuNRs)) to destroy cancer cells or tumor tissues. This is made possible thanks principally to both to the so-called near-infrared biological transparency window, characterized by wavelengths falling in the range 700–1100 nm, where light has its maximum depth of penetration in tissue, and to the efficiency of cellular uptake mechanisms of AuNPs. Consequently, the possible identification of intracellular AuNPs plays a key role for estimating the effectiveness of PTT treatments. Here, we review the recognized detection techniques of such intracellular probes with a special emphasis to the exploitation of near-infrared biological transparency window.
Collapse
|
13
|
Joplin A, Chang WS, Link S. Imaging and Spectroscopy of Single Metal Nanostructure Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3775-3786. [PMID: 29149571 DOI: 10.1021/acs.langmuir.7b03154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The highly tunable optical properties of metal nanoparticles make them an ideal building block in any application that requires control over light, heat, or electrons on the nanoscale. Because of their size, metal nanoparticles both absorb and scatter light efficiently. Consequently, improving their performance often involves shifting the balance between absorption and scattering to promote desirable features of their optical properties. Scattering by single metal nanoparticles is commonly characterized using dark-field scattering spectroscopy, but routine methods to characterize pure absorption over a broad wavelength range are much more complex. This article reviews work from our lab using photothermal imaging in combination with dark-field scattering and electron microscopy to separate radiative and nonradiative properties of single nanoparticles and their assemblies. We present both initial work using different laser wavelengths to explore pure absorption free from scattering contributions based on the heat released into the environment as well as the development of photothermal spectroscopy over a broad wavelength range, making it possible to resolve details that are otherwise hidden in ensemble measurements that most of the time also do not separate radiative and nonradiative properties.
Collapse
|
14
|
Joplin A, Hosseini Jebeli SA, Sung E, Diemler N, Straney PJ, Yorulmaz M, Chang WS, Millstone JE, Link S. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal. ACS NANO 2017; 11:12346-12357. [PMID: 29155558 DOI: 10.1021/acsnano.7b06239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bimetallic nanocatalysts have the potential to surmount current limitations in industrial catalysis if their electronic and optical properties can be effectively controlled. However, improving the performance of bimetallic photocatalysts requires a functional understanding of how the intricacies of their morphology and composition dictate every element of their optical response. In this work, we examine Au and Pt-decorated Au nanorods on a single-particle level to ascertain how Pt influences the plasmon resonance of the bimetallic nanostructure. We correlated scattering, photoluminescence, and pure absorption of individual nanostructures separately to expose the impact of Pt on each component. We found that the scattering and absorption spectra of uncoated Au nanorods followed expected trends in peak intensity and shape and were accurately reproduced by finite difference time domain simulations. In contrast, the scattering and absorption spectra of single Pt-decorated Au nanorods exhibited red-shifted, broad features and large deviations in line shape from particle to particle. Simulations using an idealized geometry confirmed that Pt damps the plasmon resonance of individual Au nanorods and that spectral changes after Pt deposition were a consequence of coupling between Au and Pt in the hybrid nanostructure. Simulations also revealed that the Au nanorod acts as an antenna and enhances absorption in the Pt islands. Furthermore, comparing photoluminescence spectra from Au and Pt-decorated Au nanorods illustrated that emission was significantly reduced in the presence of Pt. The reduction in photoluminescence intensity indicates that Pt lowers the number of hot carriers in the Au nanorod available for radiative recombination through either direct production of hot carriers in Pt following enhanced absorption or charge transfer from Au to Pt. Overall, these results confirm that the Pt island morphology and distribution on the nanorod surface contribute to the optical response of individual hybrid nanostructures and that the damping observed in ensemble measurements originates not only from structural heterogeneity but also because of significant damping in single nanostructures.
Collapse
Affiliation(s)
| | | | | | - Nathan Diemler
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Patrick J Straney
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | |
Collapse
|
15
|
Near-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis. Sci Rep 2017; 7:17327. [PMID: 29229979 PMCID: PMC5725556 DOI: 10.1038/s41598-017-17714-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Here we report a novel assembly structure of near-infrared plasmonic gold nanoparticles (AuNPs), possessing both photoacoustic (PA) and photothermal (PT) properties. The template for the plasmonic AuNP assembly is a bioconjugate between short double-strand DNA (sh-dsDNA) and human methyl binding domain protein 1 (MBD1). MBD1 binds to methylated cytosine-guanine dinucleotides (mCGs) within the sequence of sh-dsDNA. Hexahistidine peptides on the engineered MBD1 function as a nucleation site for AuNP synthesis, allowing the construction of hybrid conjugates, sh-dsDNA-MBD1-AuNPs (named DMAs). By varying the length of sh-dsDNA backbone and the spacer between two adjacent mCGs, we synthesized three different DMAs (DMA_5mCG, DMA_9mCG, and DMA_21mCG), among which DMA_21mCG exhibited a comparable photothermal and surprisingly a higher photoacoustic signals, compared to a plasmonic gold nanorod. Further, epidermal growth factor receptor I (EGFR)-binding peptides are genetically attached to the MBD1 of DMA_21mCG, enabling its efficient endocytosis into EGFR-overexpressing cancer cells. Notably, the denaturation of MBD1 disassembled the DMA and accordingly released the individual small AuNPs (<5 nm) that can be easily cleared from the body through renal excretion without causing accumulation/toxicity problems. This DMA-based novel approach offers a promising platform for targeted cancer theragnosis based on simultaneous PA imaging and PT therapy.
Collapse
|
16
|
An L, Wang Y, Tian Q, Yang S. Small Gold Nanorods: Recent Advances in Synthesis, Biological Imaging, and Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1372. [PMID: 29189739 PMCID: PMC5744307 DOI: 10.3390/ma10121372] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/16/2017] [Accepted: 11/25/2017] [Indexed: 01/22/2023]
Abstract
Over the past few decades, the synthetic development of ultra-small nanoparticles has become an important strategy in nano-medicine, where smaller-sized nanoparticles are known to be more easily excreted from the body, greatly reducing the risk caused by introducing nano-theranostic agents. Gold nanorods are one of the most important nano-theranostic agents because of their special optical and electronic properties. However, the large size (diameter > 6 nm) of most obtained gold nanorods limits their clinical application. In recent years, more and more researchers have begun to investigate the synthesis and application of small gold nanorods (diameter < 6 nm), which exhibit similar optical and electronic properties as larger gold nanorods. In this review, we summarize the recent advances of synthesis of the small gold nanorods and their application for near-infrared light-mediated bio-imaging and cancer therapy.
Collapse
Affiliation(s)
- Lu An
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Yuanyuan Wang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Qiwei Tian
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of the Ministry of Education, the Shanghai Key Laboratory of Rare Earth Functional Materials, and the Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|