1
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
2
|
Ramesh A, Das TN, Maji TK, Ghosh G. Unravelling denaturation, temperature and cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric responses. Chem Sci 2024:d4sc05016a. [PMID: 39309077 PMCID: PMC11409859 DOI: 10.1039/d4sc05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
Collapse
Affiliation(s)
- Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| | - Tarak Nath Das
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
3
|
Jia S, Tao T, Xie Y, Yu L, Kang X, Zhang Y, Tang W, Gong J. Chirality Supramolecular Systems: Helical Assemblies, Structure Designs, and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307874. [PMID: 37890278 DOI: 10.1002/smll.202307874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Chirality, as one of the most striking characteristics, exists at various scales in nature. Originating from the interactions of host and guest molecules, supramolecular chirality possesses huge potential in the design of functional materials. Here, an overview of the recent progress in structure designs and functions of chiral supramolecular materials is present. First, three design routes of the chiral supramolecular structure are summarized. Compared with the template-induced and chemical synthesis strategies that depend on accurate molecular identification, the twisted-assembly technique creates chiral materials through the ordered stacking of the nanowire or films. Next, chirality inversion and amplification are reviewed to explain the chirality transfer from the molecular level to the macroscopic scale, where the available external stimuli on the chirality inversion are also given. Lastly, owing to the optical activity and the characteristics of the layer-by-layer stacking structure, the supramolecular chirality materials display various excellent performances, including smart response, shape-memorization, superior mechanical performance, and applications in biomedical fields. To sum up, this work provides a systematic review of the helical assemblies, structure design, and applications of supramolecular chirality systems.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang Kang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
4
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
5
|
Kravchenko Y, Sikora K, Wireko AA, Lyndin M. Fluorescence visualization for cancer DETECTION: EXPERIENCE and perspectives. Heliyon 2024; 10:e24390. [PMID: 38293525 PMCID: PMC10827512 DOI: 10.1016/j.heliyon.2024.e24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The current review focuses on the latest advances in the improvement and application of fluorescence imaging technology. Near-infrared (NIR) fluorescence imaging is a promising new technique that uses non-specific fluorescent agents and targeted fluorescent tracers combined with a dedicated camera to better navigate and visualize tumors. Fluorescence-guided surgery (FGS) is used to perform various tasks, helping the surgeon to distinguish lymphatic vessels and nodes from surrounding tissues easily and quickly assess the perfusion of the planned resection area, including intraoperative visualization of metastases. The results of the insertion of fluorescence visualization as an auxiliary method to cancer detection and high-risk metastatic lesions in clinical practice have demonstrated enthusiastic results and huge potential. However, intraoperative fluorescence visualization must not be considered as a main diagnostic or treatment method but as an aid to the surgeon. Thus, fluorescence study does not dispense the diagnostic gold standards of benign or malignant tumors (conventional examination, biopsy, ultrasonography and computed tomography, etc.) and can be done usually during intraoperative treatment. Moreover, as fluorescence surgery and fluorescence diagnostic techniques continue to improve, it is likely that they will evolve towards targeted fluorescence imaging probes that will increasingly target a specific type of cancer cell. The most important point remains the search for highly selective messengers of fluorescent labels, which make it possible to identify tumor cells exclusively in the affected organs and indicate to surgeons the boundaries of their spread and metastasis.
Collapse
Affiliation(s)
- Yaroslav Kravchenko
- Sumy State University, Sumy, Ukraine
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | | | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| |
Collapse
|
6
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Song J, Ma L, Sun S, Tian H, Ma X. Reversible Multilevel Stimuli-Responsiveness and Multicolor Room-Temperature Phosphorescence Emission Based on a Single-Component System. Angew Chem Int Ed Engl 2022; 61:e202206157. [PMID: 35576103 DOI: 10.1002/anie.202206157] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/23/2022]
Abstract
There are limited reports about the transformation of pure organic room-temperature phosphorescence (RTP) materials with multilevel stimuli-responsiveness at different RTP emission wavelengths under external stimuli. It is difficult to ensure efficient intersystem crossing (ISC) in different states of a single-component system. This research reports the conversion of the organic single-component small molecule 1,2-bis(4-alkoxyphenyl)ethane-1,2-dione (N-BOX) with multilevel stimuli-responsiveness between high-efficiency blue and yellow RTP by grinding or thermal annealing N-BOX crystals. The RTP emission of N-BOX in the crystalline state was easy to adjust by external stimuli (grinding or thermal annealing) due to its non-compact packing, which led to a phase transition and generated unique multilevel stimuli-responsiveness. In particular, the RTP quantum yield of 7-BOX with multilevel stimuli-responsiveness reached 68.4 %, which provides an opportunity for regulation of smart optical materials based on pure organic RTP.
Collapse
Affiliation(s)
- Jinming Song
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Liangwei Ma
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Siyu Sun
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiang Ma
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre, Frontiers Science for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
8
|
Song J, Ma L, Sun S, Tian H, Ma X. Reversible Multilevel Stimuli‐Responsiveness and Multicolor Room‐Temperature Phosphorescence Emission Based on a Single‐Component System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinming Song
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre Frontiers Science for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Liangwei Ma
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre Frontiers Science for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Siyu Sun
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre Frontiers Science for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre Frontiers Science for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Xiang Ma
- Key Laboratory for Advance Materials and Feringa Noble Prize Scientist Joint Research Centre Frontiers Science for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
9
|
Guo J, Yang C, Zhao Y. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems. Acc Chem Res 2022; 55:1160-1170. [PMID: 35394748 DOI: 10.1021/acs.accounts.2c00038] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-lived organic room-temperature phosphorescence (RTP) materials have recently drawn extensive attention because of their promising applications in information security, biological imaging, optoelectronic devices, and intelligent sensors. In contrast to conventional fluorescence, the RTP phenomenon originates from the slow radiative transition of triplet excitons. Thus, enhancing the intersystem crossing (ISC) rate from the lowest excited singlet state (S1) to the excited triplet state and suppressing the nonradiative relaxation channels of the lowest excited triplet state (T1) are reasonable methods for realizing highly efficient RTP in purely organic materials. Over the past few decades, many strategies have been designed on the basis of the above two crucial factors. The introduction of heavy atoms, aromatic carbonyl groups, and other heteroatoms with abundant lone-pair electrons has been demonstrated to strengthen the spin-orbit coupling, thereby successfully facilitating the ISC process. Furthermore, the rigid environment is commonly constructed through crystal engineering to restrict intramolecular motions and intermolecular collisions to decrease excited-state energy dissipation. However, most crystal-based organic RTP materials suffer from poor processability, flexibility, and reproducibility, becoming a thorny obstacle to their practical application.Amorphous organic polymers with long-lived RTP characteristics are more competitive in materials science. The intertwined structures and long chains of polymers not only ensure the rigid environment with multiple interactions but also protect triplet excitons from the surroundings, which are conducive to realizing ultralong and bright RTP emission. Exploring the fabrication strategies, intrinsic mechanisms, and practical applications of organic long-lived RTP polymers is highly desirable but remains a formidable challenge. In particular, intelligent organic RTP polymer systems that are capable of dynamically responding to external stimuli (e.g., light, temperature, oxygen, and humidity) have been rarely reported. To develop multifunctional RTP materials and expand their potential applications, a great amount of effort has been expended.This Account gives a summary of the significant advances in amorphous organic RTP polymer systems, especially smart stimulus-responsive ones, focusing on the construction of a rigid environment to suppress nonradiative deactivation by abundant inter/intramolecular interactions. The typical interactions in RTP polymer systems mainly include hydrogen bonding, ionic bonding, and covalent bonding, which can change the molecular electronic structures and affect the energy dissipation channels of the excited states. An in-depth understanding of intrinsic mechanisms and an extensive exploration of potential applications for excitation-dependent color-tunable, ultraviolet (UV) irradiation-activated, temperature-dependent, water-responsive, and circularly polarized RTP polymer systems are distinctly illustrated in this Account. Furthermore, we propose some detailed perspectives in terms of materials design, mechanism exploration, and promising application potential with the hope to provide helpful guidance for the future development of amorphous organic RTP polymers.
Collapse
Affiliation(s)
- Jingjing Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chaolong Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
10
|
Wang X, Wu B, Zhang Y, Feng C. Chiral graphene-based supramolecular hydrogels toward tumor therapy. Polym Chem 2022. [DOI: 10.1039/d1py01724a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drugs with chiral property are playing very important role on precise treatment of diseases (especially antitumor drugs), however, enantioselective delivery of chiral anticancer drugs is still challenge. Herein, a chiral...
Collapse
|
11
|
Yu HJ, Zhou Q, Dai X, Shen FF, Zhang YM, Xu X, Liu Y. Photooxidation-Driven Purely Organic Room-Temperature Phosphorescent Lysosome-Targeted Imaging. J Am Chem Soc 2021; 143:13887-13894. [PMID: 34410118 DOI: 10.1021/jacs.1c06741] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The construction of host-guest-binding-induced phosphorescent supramolecular assemblies has become one of increasingly significant topics in biomaterial research. Herein, we demonstrate that the cucurbit[8]uril host can induce the anthracene-conjugated bromophenylpyridinium guest to form a linear supramolecular assembly, thus facilitating the enhancement of red fluorescence emission by the host-stabilized charge-transfer interactions. When the anthryl group is photo-oxidized to anthraquinone, the obtained linear nanoconstructs can be readily converted into the homoternary inclusion complex, accompanied by the emergence of strong green phosphorescence in aqueous solution. More intriguingly, dual organelle-targeted imaging abilities have been also distinctively achieved in nuclei and lysosomes after undergoing photochemical reaction upon UV irradiation. This photooxidation-driven purely organic room-temperature phosphorescence provides a convenient and feasible strategy for supramolecular organelle identification to track specific biospecies and physiological events in the living cells.
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
12
|
Zhen X, Qu R, Chen W, Wu W, Jiang X. The development of phosphorescent probes for in vitro and in vivo bioimaging. Biomater Sci 2021; 9:285-300. [PMID: 32756681 DOI: 10.1039/d0bm00819b] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphorescence is a process that slowly releases the photoexcitation energy after the removal of the excitation source. Although transition metal complexes and purely organic room-temperature phosphorescence (RTP) materials show excellent phosphorescence property, their applications in in vitro and in vivo bioimaging are limited due to their poor solubility in water. To overcome this issue, phosphorescent materials are modified with amphiphilic or hydrophilic polymers to endow them with biocompatibility. This review focuses on recent advances in the development of phosphorescent probes for in vitro and in vivo bioimaging. The photophysical mechanism and the design principles of transition metal complexes and purely organic RTP materials for the stabilization of the triplet excited state for enhanced phosphorescence are first discussed. Then, the applications in in vitro and in vivo bioimaging using transition metal complexes including iridium(iii) complexes, platinum(ii) complexes, rhodium(i) complexes, and purely organic RTP materials are summarized. Finally, the current challenges and perspectives for these emerging materials in bioimaging are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
13
|
Wen L, Sun J, Li C, Zhu C, Zhang X, Wang Z, Song Q, Lv C, Zhang Y. Rich-colour mechanochromism of a cyanostilbene derivative with chiral self-assembly. NEW J CHEM 2021. [DOI: 10.1039/d1nj01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tricolored fluorescence switching was realized in a novel chiral fluorophore. The fabrication of a helical assembly was proposed as a candidate strategy for attaining an additional metastable state, which contributed to enriched PL colors via pairwise excimer emission.
Collapse
Affiliation(s)
- Li Wen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jingwei Sun
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Chengjian Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chenfei Zhu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xi Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Zhenbo Wang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Qingbao Song
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Yujian Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| |
Collapse
|
14
|
Fu S, Su X, Li M, Song S, Wang L, Wang D, Tang BZ. Controllable and Diversiform Topological Morphologies of Self-Assembling Supra-Amphiphiles with Aggregation-Induced Emission Characteristics for Mimicking Light-Harvesting Antenna. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001909. [PMID: 33101876 PMCID: PMC7578885 DOI: 10.1002/advs.202001909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Indexed: 06/01/2023]
Abstract
Controllable construction of diversiform topological morphologies through supramolecular self-assembly on the basis of single building block is of vital importance, but still remains a big challenge. Herein, a bola-type supra-amphiphile, namely DAdDMA@2β-CD, is rationally designed and successfully prepared by typical host-guest binding β-cyclodextrin units with an aggregation-induced emission (AIE)-active scaffold DAdDMA. Self-assembling investigation reveals that several morphologies of self-assembled DAdDMA@2β-CD including leaf-like lamellar structure, nanoribbons, vesicles, nanofibers, helical nanofibers, and toroids, can be straightforwardly fabricated by simply manipulating the self-assembling solvent proportioning and/or temperature. To the best of knowledge, this presented protocol probably holds the most types of self-assembling morphology alterations using a single entity. Moreover, the developed leaf-like lamellar structure performs well in mimicking the light-harvesting antenna system by incorporating with a Förster resonance energy transfer acceptor, providing up to 94.2% of energy transfer efficiency.
Collapse
Affiliation(s)
- Shuang Fu
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongChina
| | - Xiang Su
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Meng Li
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Shanliang Song
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Lei Wang
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
| | - Dong Wang
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongChina
| |
Collapse
|
15
|
Liu C, Shen Y, Zhao Y, Ye K, Yuan K. The effect of halogen on arylsulfonylated phenothiazines for solid-sate luminescence and photocatalytic performance. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Ishi-I T, Tanaka H, Park IS, Yasuda T, Kato SI, Ito M, Hiyoshi H, Matsumoto T. White-light emission from a pyrimidine-carbazole conjugate with tunable phosphorescence-fluorescence dual emission and multicolor emission switching. Chem Commun (Camb) 2020; 56:4051-4054. [PMID: 32167119 DOI: 10.1039/d0cc00251h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free organic carbazole-pyrimidine dye exhibiting phosphorescence-fluorescence dual emission was developed into a white-light emission-switching system. The two crystal polymorphs obtained by breaking the molecular symmetry responded to the external stimuli of heating, vapor-fuming, and mechanical grinding, resulting in a tricolor switching system that includes white-light emission.
Collapse
Affiliation(s)
- Tsutomu Ishi-I
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume 830-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Takeshima N, Sugawa K, Tahara H, Jin S, Wakui H, Fukushima M, Tokuda K, Igari S, Kanakubo K, Hayakawa Y, Katoh R, Takase K, Otsuki J. Plasmonic Silver Nanoprism-Induced Emissive Mode Control between Fluorescence and Phosphorescence of a Phosphorescent Palladium Porphyrin Derivative. ACS NANO 2019; 13:13244-13256. [PMID: 31633926 DOI: 10.1021/acsnano.9b06269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have succeeded in significantly enhancing fluorescence from intrinsically phosphorescent palladium octaethylporphyrin (Pd-porphyrin) that has an intersystem crossing efficiency of ∼1 by using silver nanoprisms (AgPRs). This was achieved by controlling the wavelength of the localized surface plasmon (LSP) resonance of AgPRs and the distance between the Pd-porphyrin molecules and the AgPR surfaces. In addition to enhancing phosphorescence by spectrally overlapping the phosphorescence band with the LSP resonance band, tuning the LSP wavelength to approximately 520 nm led to the appearance of a new emission band around the wavelength corresponding to the fluorescent radiation. The appearance of fluorescence suggests that the nonradiative energy transfer from the singlet excited state of Pd-porphyrin to the LSP of AgPRs overcame the ultrafast intramolecular intersystem crossing to the triplet excited state, manifesting the spectral properties of the singlet excited state of Pd-porphyrin. The fluorescence nature of this radiation was strongly supported by lifetime measurements of the hybrids of Pd-porphyrin and AgPRs. Furthermore, the dependence of the emissive intensities on the distance between the Pd-porphyrin molecules and the AgPR surfaces showed interesting opposite trends. The fluorescence intensity was increased as the distance between the molecules and the AgPRs was decreased from 10.5 to 1 nm, while the phosphorescence intensity was decreased, which indicates that the LSP-induced fluorescence radiation process from Pd-porphyrin near the AgPRs outweighed the quenching by the AgPRs, even though the phosphorescence significantly suffered quenching.
Collapse
Affiliation(s)
- Naoto Takeshima
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Hironobu Tahara
- Graduate School of Engineering , Nagasaki University , Bunkyo, Nagasaki 852-8521 , Japan
| | - Shota Jin
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Hiroki Wakui
- Department of Chemical Biology and Applied Chemistry, College of Engineering , Nihon University , Koriyama , Fukushima 963-8642 , Japan
| | - Misa Fukushima
- Department of Chemical Biology and Applied Chemistry, College of Engineering , Nihon University , Koriyama , Fukushima 963-8642 , Japan
| | - Kyo Tokuda
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Shuto Igari
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Kotomi Kanakubo
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Yutaro Hayakawa
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| | - Ryuzi Katoh
- Department of Chemical Biology and Applied Chemistry, College of Engineering , Nihon University , Koriyama , Fukushima 963-8642 , Japan
| | - Kouichi Takase
- Department of Physics, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology , Nihon University , Kanda-Surugadai, Chiyoda-ku , Tokyo 101-8308 , Japan
| |
Collapse
|
18
|
Liu G, Zhou C, Teo WL, Qian C, Zhao Y. Self‐Sorting Double‐Network Hydrogels with Tunable Supramolecular Handedness and Mechanical Properties. Angew Chem Int Ed Engl 2019; 58:9366-9372. [DOI: 10.1002/anie.201904884] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Guofeng Liu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Cheng Zhou
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Wei Liang Teo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Cheng Qian
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
19
|
Liu G, Zhou C, Teo WL, Qian C, Zhao Y. Self‐Sorting Double‐Network Hydrogels with Tunable Supramolecular Handedness and Mechanical Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guofeng Liu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Cheng Zhou
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Wei Liang Teo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Cheng Qian
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
20
|
Kousar A, Feng C. Controlled mechanical properties and supramolecular chirality of hydrogels via pH change. MethodsX 2019; 6:417-423. [PMID: 30899678 PMCID: PMC6406592 DOI: 10.1016/j.mex.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/17/2019] [Indexed: 12/23/2022] Open
Abstract
In order to widen the use of soft materials in tissue engineering and life sciences, hydrogels with improved mechanical properties and controlled chirality are critical to achieve. A methodology is presented to enhance the mechanical properties and gain the control of chirality of two component hydrogels by merely varying the solution pH. pH change has been used as a way to ionize the specific functionalities into positive and negative charges. These positive and negative charges are crucial to provide a surge of electrostatic interactions to the components, imparting the improvement in stability and regulating their optical activity. Our goal is to throw light on the significance of opposite charges in the hydrogels for achievement of desired properties. •Role of ionisable groups is crucial to control viscoelastic and optical properties of supramolecular hydrogels.•Increasing the pH of the solution increases the number of negative ions by affecting the ionisable moieties, which interact with the positive charges in the solution.•Zeta potential of both materials has been analysed to ensure the presence of charged species.
Collapse
Affiliation(s)
- Ayesha Kousar
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
- Henan Univ, Collaborat Innovat Ctr Nano Funct Mat & Applicat, Key Lab Special Funct Mat, Kaifeng 475004, China
| |
Collapse
|
21
|
Liu G, Sheng J, Teo WL, Yang G, Wu H, Li Y, Zhao Y. Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions. J Am Chem Soc 2018; 140:16275-16283. [DOI: 10.1021/jacs.8b10024] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianhui Sheng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Wei Liang Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
22
|
|
23
|
Xu J, Feng H, Teng H, Chen G, Pan S, Chen J, Qian Z. Reversible Switching between Phosphorescence and Fluorescence in a Unimolecular System Controlled by External Stimuli. Chemistry 2018; 24:12773-12778. [DOI: 10.1002/chem.201801739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Jing Xu
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| | - Hui Feng
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| | - Hao Teng
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| | - Guilin Chen
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| | - Saifei Pan
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| | - Jianrong Chen
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| | - Zhaosheng Qian
- Department of Chemistry, College of Chemistry and Life Sciences; Zhejiang Normal University; Yingbin Road 688 Jinhua 321004 P.R. China
| |
Collapse
|
24
|
Liu G, Sheng J, Wu H, Yang C, Yang G, Li Y, Ganguly R, Zhu L, Zhao Y. Controlling Supramolecular Chirality of Two-Component Hydrogels by J- and H-Aggregation of Building Blocks. J Am Chem Soc 2018; 140:6467-6473. [DOI: 10.1021/jacs.8b03309] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianhui Sheng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Chaolong Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P.R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
25
|
Liu G, Li X, Sheng J, Li PZ, Ong WK, Phua SZF, Ågren H, Zhu L, Zhao Y. Helicity Inversion of Supramolecular Hydrogels Induced by Achiral Substituents. ACS NANO 2017; 11:11880-11889. [PMID: 29140680 DOI: 10.1021/acsnano.7b06097] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Probing the supramolecular chirality of assemblies and controlling their handedness are closely related to the origin of chirality at the supramolecular level and the development of smart materials with desired handedness. However, it remains unclear how achiral residues covalently bonded to chiral amino acids can function in the chirality inversion of supramolecular assemblies. Herein, we report macroscopic chirality and dynamic manipulation of chiroptical activity of hydrogels self-assembled from phenylalanine derivatives, together with the inversion of their handedness achieved solely by exchanging achiral substituents between oligo(ethylene glycol) and carboxylic acid groups. This helicity inversion is mainly induced by distinct stacking mode of the self-assembled building blocks, as collectively confirmed by scanning electron microscopy, circular dichroism, crystallography, and molecular dynamics calculations. Through this straightforward approach, we were able to invert the handedness of helical assemblies by merely exchanging achiral substituents at the terminal of chiral gelators. This work not only presents a feasible strategy to achieve the handedness inversion of helical nanostructures for better understanding of chiral self-assembly process in supramolecular chemistry but also facilities the development of smart materials with controllable handedness in materials science.
Collapse
Affiliation(s)
- Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
| | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Jianhui Sheng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, P.R. China
| | - Pei-Zhou Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
| | - Wee Kong Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, P.R. China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 21 Nanyang Link, 637371 Singapore
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|