1
|
Lu P, Deng S, Liu J, Xiao Q, Zhou Z, Li S, Xin J, Shu G, Yi B, Yin G. Tweety homolog 3 promotes colorectal cancer progression through mutual regulation of histone deacetylase 7. MedComm (Beijing) 2024; 5:e576. [PMID: 38827027 PMCID: PMC11141500 DOI: 10.1002/mco2.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 06/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers worldwide, with metastasis being a major cause of high mortality rates among patients. In this study, dysregulated gene Tweety homolog 3 (TTYH3) was identified by Gene Expression Omnibus database. Public databases were used to predict potential competing endogenous RNAs (ceRNAs) for TTYH3. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were utilized to analyze TTYH3 and histone deacetylase 7 (HDAC7) levels. Luciferase assays confirmed miR-1271-5p directly targeting the 3' untranslated regions of TTYH3 and HDAC7. In vitro experiments such as transwell and human umbilical vein endothelial cell tube formation, as well as in vivo mouse models, were conducted to assess the biological functions of TTYH3 and HDAC7. We discovered that upregulation of TTYH3 in CRC promotes cell migration by affecting the Epithelial-mesenchymal transition pathway, which was independent of its ion channel activity. Mechanistically, TTYH3 and HDAC7 functioned as ceRNAs, reciprocally regulating each other's expression. TTYH3 competes for binding miR-1271-5p, increasing HDAC7 expression, facilitating CRC metastasis and angiogenesis. This study reveals the critical role of TTYH3 in promoting CRC metastasis through ceRNA crosstalk, offering new insights into potential therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Pengyan Lu
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Shumin Deng
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Jiaxin Liu
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Qing Xiao
- Department of PathologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhengwei Zhou
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Shuojie Li
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Jiaxuan Xin
- Department of Gastrointestinal SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Guang Shu
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
| | - Bo Yi
- Department of PathologyThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Gang Yin
- Department of PathologyXiangya Hospital, School of Basic Medical Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- China‐Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
2
|
Long X, Yuan Q, Tian R, Zhang W, Liu L, Yang M, Yuan X, Deng Z, Li Q, Sun R, Kang Y, Peng Y, Kuang X, Zeng L, Yuan Z. Efficient healing of diabetic wounds by MSC-EV-7A composite hydrogel via suppression of inflammation and enhancement of angiogenesis. Biomater Sci 2024; 12:1750-1760. [PMID: 38375548 DOI: 10.1039/d3bm01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Diabetes mellitus (DM) is characterized by prolonged hyperglycemia, impaired vascularization, and serious complications, such as blindness and chronic diabetic wounds. About 25% of patients with DM are estimated to encounter impaired healing of diabetic wounds, often leading to lower limb amputation. Multiple factors are attributed to the non-healing of diabetic wounds, including hyperglycaemia, chronic inflammation, and impaired angiogenesis. It is imperative to develop more efficient treatment strategies to tackle healing difficulties in diabetic wounds. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising for diabetic wound healing considering their anti-inflammatory, pro-angiogenic and pro-proliferative activities. A histone deacetylase 7 (HDAC7)-derived 7-amino-acid peptide (7A) was shown to be highly effective for angiogenesis. However, it has never been investigated whether MSC-EVs are synergistic with 7A for the healing of diabetic wounds. Herein, we propose that MSC-EVs can be combined with 7A to greatly promote diabetic wound healing. The combination of EVs and 7A significantly improved the migration and proliferation of skin fibroblasts. Moreover, EVs alone significantly suppressed LPS-induced inflammation in macrophages, and notably, the combination treatment showed an even better suppression effect. Importantly, the in vivo study revealed that the combination therapy consisting of EVs and 7A in an alginate hydrogel was more efficient for the healing of diabetic wounds in rats than monotherapy using either EV or 7A hydrogels. The underlying mechanisms include suppression of inflammation, improvement of skin cell proliferation and migration, and enhanced collagen fiber disposition and angiogenesis in wounds. In summary, the MSC-EV-7A hydrogel potentially constitutes a novel therapy for efficient healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Minghui Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Ronghui Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Yuyi Kang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Yingying Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Xiubin Kuang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Lingfang Zeng
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, SE5 9NU, UK.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
3
|
Xie S, Leng J, Zhao S, Zhu L, Zhang M, Ning M, Zhao B, Kong L, Yin Y. Design and biological evaluation of dual tubulin/HDAC inhibitors based on millepachine for treatment of prostate cancer. Eur J Med Chem 2024; 268:116301. [PMID: 38452727 DOI: 10.1016/j.ejmech.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.
Collapse
Affiliation(s)
- Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
4
|
Wang F, Qin K, Wang K, Wang H, Liu Q, Qian M, Chen S, Sun Y, Hou J, Wei Y, Hu Y, Li Z, Xu Q, Zhao Q. Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Rep 2022; 39:110981. [PMID: 35732119 DOI: 10.1016/j.celrep.2022.110981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/29/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular bypass surgery continues to use autologous grafts and often suffers from a shortage of donor grafts. Decellularized xenografts derived from porcine veins provide a promising candidate because of their abundant availability and low immunogenicity. Unfortunately, transplantation outcomes are far from satisfactory because of insufficient regeneration and adverse pathologic remodeling. Herein, a nitrate-functionalized prosthesis has been incorporated into a decellularized porcine vein graft to fabricate a bio-hybrid vascular graft with local delivery of nitric oxide (NO). Exogenous NO efficiently promotes vascular regeneration and attenuates intimal hyperplasia and vascular calcification in both rabbit and mouse models. The underlying mechanism was investigated using a Sca1 2A-CreER; Rosa-RFP genetic-lineage-tracing mouse model that reveals that Sca1+ stem/progenitor cells (SPCs) are major contributors to vascular regeneration and remodeling, and NO plays a critical role in regulating SPC fate. These results support the translational potential of this off-the-shelf vascular graft.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Kang Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yijin Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingli Hou
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Chen W, Xiao W, Liu X, Yuan P, Zhang S, Wang Y, Wu W. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact Mater 2022; 11:283-299. [PMID: 34977432 PMCID: PMC8668428 DOI: 10.1016/j.bioactmat.2021.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/28/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Declined regenerative potential and aggravated inflammation upon aging create an inappropriate environment for arterial regeneration. Macrophages are one of vital effector cells in the immune microenvironment, especially during biomaterials mediated repairing process. Here, we revealed that the macrophage autophagy decreased with aging, which led to aggravated inflammation, thereby causing poor vascular remodeling of artificial grafts in aging body. Through loading the autophagy-targeted drugs, rapamycin and 3-MA (3-methyladenine), in PCL (polycaprolactone) sheath of the PGS (poly glycerol sebacate) - PCL vascular graft, the essential role of macrophage autophagy was confirmed in regulating macrophage polarization and biomaterial degradation. Moreover, the utilization of rapamycin promoted anti-inflammatory polarization of macrophage by activating autophagy, which further promoted myogenic differentiation of vascular progenitor cells and accelerated endothelialization. Our study elucidated the contribution of pharmacological manipulation of macrophage autophagy in promoting regeneration of small caliber artery, which may pave a new avenue for clinical translation of vascular grafts in aging body.
Collapse
Affiliation(s)
- Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China
| | - Weiwei Xiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuzheng Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pingping Yuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yinggang Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Hu K, Li Y, Ke Z, Yang H, Lu C, Li Y, Guo Y, Wang W. History, progress and future challenges of artificial blood vessels: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:81-98. [PMID: 35837341 PMCID: PMC9255792 DOI: 10.12336/biomatertransl.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, Hubei Province, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Clinical Centre of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| |
Collapse
|
7
|
Zhi D, Cheng Q, Midgley AC, Zhang Q, Wei T, Li Y, Wang T, Ma T, Rafique M, Xia S, Cao Y, Li Y, Li J, Che Y, Zhu M, Wang K, Kong D. Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. SCIENCE ADVANCES 2022; 8:eabl3888. [PMID: 35294246 PMCID: PMC8926343 DOI: 10.1126/sciadv.abl3888] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a lack in clinically-suitable vascular grafts. Biotubes, prepared using in vivo tissue engineering, show potential for vascular regeneration. However, their mechanical strength is typically poor. Inspired by architectural design of steel fiber reinforcement of concrete for tunnel construction, poly(ε-caprolactone) (PCL) fiber skeletons (PSs) were fabricated by melt-spinning and heat treatment. The PSs were subcutaneously embedded to induce the assembly of host cells and extracellular matrix to obtain PS-reinforced biotubes (PBs). Heat-treated medium-fiber-angle PB (hMPB) demonstrated superior performance when evaluated by in vitro mechanical testing and following implantation in rat abdominal artery replacement models. hMPBs were further evaluated in canine peripheral arterial replacement and sheep arteriovenous graft models. Overall, hMPB demonstrated appropriate mechanics, puncture resistance, rapid hemostasis, vascular regeneration, and long-term patency, without incidence of luminal expansion or intimal hyperplasia. These optimized hMPB properties show promise as an alternatives to autologous vessels in clinical applications.
Collapse
Affiliation(s)
- Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiuying Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yi Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Urban Transport Emission Control Research Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tengzhi Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shuang Xia
- Department of Radiology, Tianjin Key Disciplines of Radiology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yuejuan Cao
- Department of Vascular Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yangchun Li
- Department of Vascular Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Jing Li
- Department of Ultrasound, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongzhe Che
- Department of Pathology and Anatomy, School of Medicine, Nankai University, Tianjin 300071, China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
- Corresponding author. (D.K.); (K.W.); (M.Z.)
| |
Collapse
|
8
|
Wang H, Xing M, Deng W, Qian M, Wang F, Wang K, Midgley AC, Zhao Q. Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioact Mater 2022; 16:433-450. [PMID: 35415291 PMCID: PMC8965769 DOI: 10.1016/j.bioactmat.2022.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
|
9
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
10
|
Yang S, Zheng X, Qian M, Wang H, Wang F, Wei Y, Midgley AC, He J, Tian H, Zhao Q. Nitrate-Functionalized poly(ε-Caprolactone) Small-Diameter Vascular Grafts Enhance Vascular Regeneration via Sustained Release of Nitric Oxide. Front Bioeng Biotechnol 2021; 9:770121. [PMID: 34917597 PMCID: PMC8670382 DOI: 10.3389/fbioe.2021.770121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Artificial small-diameter vascular grafts (SDVG) fabricated from synthetic biodegradable polymers, such as poly(ε-caprolactone) (PCL), exhibit beneficial mechanical properties but are often faced with issues impacting their long-term graft success. Nitric oxide (NO) is an important physiological gasotransmitter with multiple roles in orchestrating vascular tissue function and regeneration. We fabricated a functional vascular graft by electrospinning of nitrate-functionalized poly(ε-caprolactone) that could release NO in a sustained manner via stepwise biotransformation in vivo. Nitrate-functionalized SDVG (PCL/NO) maintained patency following abdominal arterial replacement in rats. PCL/NO promoted cell infiltration at 3-months post-transplantation. In contrast, unmodified PCL SDVG showed slow cell in-growth and increased incidence of neointima formation. PCL/NO demonstrated improved endothelial cell (EC) alignment and luminal coverage, and more defined vascular smooth muscle cell (VSMC) layer, compared to unmodified PCL SDVG. In addition, release of NO stimulated Sca-1+ vascular progenitor cells (VPCs) to differentiate and contribute to rapid luminal endothelialization. Furthermore, PCL/NO inhibited the differentiation of VPCs into osteopontin-positive cells, thereby preventing vascular calcification. Overall, PCL/NO demonstrated enhanced cell ingrowth, EC monolayer formation and VSMC layer regeneration; whilst inhibiting calcified plaque formation. Our results suggested that PCL/NO could serve as promising candidates for improved and long-term success of SDVG implants.
Collapse
Affiliation(s)
- Sen Yang
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xueni Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.,Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
11
|
Perveen S, Rossin D, Vitale E, Rosso R, Vanni R, Cristallini C, Rastaldo R, Giachino C. Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. Int J Mol Sci 2021; 22:ijms222313054. [PMID: 34884856 PMCID: PMC8658014 DOI: 10.3390/ijms222313054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.
Collapse
Affiliation(s)
- Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
- Correspondence:
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (S.P.); (D.R.); (E.V.); (R.R.); (R.V.); (C.G.)
| |
Collapse
|
12
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Li MX, Li L, Zhou SY, Cao JH, Liang WH, Tian Y, Shi XT, Yang XB, Wu DY. A biomimetic orthogonal-bilayer tubular scaffold for the co-culture of endothelial cells and smooth muscle cells. RSC Adv 2021; 11:31783-31790. [PMID: 35496878 PMCID: PMC9041441 DOI: 10.1039/d1ra04472a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
In blood vessels, endothelial cells (ECs) grow along the direction of blood flow, while smooth muscle cells (SMCs) grow circumferentially along the vessel wall. To mimic this structure, a polycaprolactone (PCL) tubular scaffold with orthogonally oriented bilayer nanofibers was prepared via electrospinning and winding. ECs were cultured on the inner layer of the scaffold with axial nanofibers and SMCs were cultured on the outer layer of the scaffold with circumferential nanofibers. Fluorescence images of the F-actin distribution of ECs and SMCs indicated that cells adhered, stretched, and proliferated in an oriented manner on the scaffold. Moreover, layers of ECs and SMCs formed on the scaffold after one month of incubation. The expression levels of platelet-endothelial cell adhesion molecule 1 (PECAM-1) and a contractile SMC phenotype marker in the EC/SMC co-culture system were much higher than those in individual culture systems, thus demonstrating that the proposed biomimetic scaffold promoted the intercellular junction of ECs and preserved the contractile phenotype of SMCs. To mimic blood vessels, a polycaprolactone tubular scaffold was prepared via electrospinning and winding. Endothelial cells were cultured on the inner layer with axial nanofibers and smooth muscle cells were cultured on the outer layer with circumferential nanofibers.![]()
Collapse
Affiliation(s)
- Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wei-Hua Liang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ye Tian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China .,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xue-Tao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology Guangzhou 510006 P. R. China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University Beijing 100029 P. R. China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
14
|
Mak JYW, Wu KC, Gupta PK, Barbero S, McLaughlin MG, Lucke AJ, Tng J, Lim J, Loh Z, Sweet MJ, Reid RC, Liu L, Fairlie DP. HDAC7 Inhibition by Phenacetyl and Phenylbenzoyl Hydroxamates. J Med Chem 2021; 64:2186-2204. [PMID: 33570940 DOI: 10.1021/acs.jmedchem.0c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sheila Barbero
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maddison G McLaughlin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhixuan Loh
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts. Biomaterials 2020; 257:120226. [DOI: 10.1016/j.biomaterials.2020.120226] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
|
17
|
Chen W, Jia S, Zhang X, Zhang S, Liu H, Yang X, Zhang C, Wu W. Dimeric Thymosin β4 Loaded Nanofibrous Interface Enhanced Regeneration of Muscular Artery in Aging Body through Modulating Perivascular Adipose Stem Cell-Macrophage Interaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903307. [PMID: 32328425 PMCID: PMC7175290 DOI: 10.1002/advs.201903307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 05/03/2023]
Abstract
Regenerating nonthrombotic and compliant artery, especially in the aging body, remains a major surgical challenge, mainly owing to the inadequate knowledge of the major cell sources contributing to arterial regeneration and insufficient bioactivity of delivered peptides in grafts. Ultrathin nanofibrous sheaths stented with biodegrading elastomer present opening channels and reduced material residue, enabling fast cell recruitment and host remodeling, while incorporating peptides offering developmental cues are challenging. In this study, a recombinant human thymosin β4 dimer (DTβ4) that contains two complete Tβ4 molecules is produced. The adult perivascular adipose is found as the dominant source of vascular progenitors which, when stimulated by the DTβ4-loaded nanofibrous sheath, enables 100% patency rates, near-complete structural as well as adequate functional regeneration of artery, and effectively ameliorates aging-induced defective regeneration. As compared with Tβ4, DTβ4 exhibits durable regenerative activity including recruiting more progenitors for endothelial cells and smooth muscle cells, when incorporated into the ultrathin polycaprolactone sheath. Moreover, the DTβ4-loaded interface promotes smooth muscle cells differentiation, mainly through promoting M2 macrophage polarization and chemokines. Incorporating artificial DTβ4 into ultrathin sheaths of fast degrading vascular grafts creates an effective interface for sufficient muscular remodeling thus offering a robust tool for vessel replacement.
Collapse
Affiliation(s)
- Wanli Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Sansan Jia
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xinchi Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Siqian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Huan Liu
- Department of PathophysiologyInstitute of Basic Medical ScienceXi'an Medical UniversityXi'anChina
| | - Xin Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Cun Zhang
- State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of Pharmacythe Fourth Military Medical UniversityXi'anChina
| | - Wei Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Oral & Maxillofacial SurgerySchool of Stomatologythe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
18
|
Yang J, Moraga A, Xu J, Zhao Y, Luo P, Lao KH, Margariti A, Zhao Q, Ding W, Wang G, Zhang M, Zheng L, Zhang Z, Hu Y, Wang W, Shen L, Smith A, Shah AM, Wang Q, Zeng L. A histone deacetylase 7-derived peptide promotes vascular regeneration via facilitating 14-3-3γ phosphorylation. Stem Cells 2020; 38:556-573. [PMID: 31721359 PMCID: PMC7187271 DOI: 10.1002/stem.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 7 (HDAC7) plays a pivotal role in the maintenance of the endothelium integrity. In this study, we demonstrated that the intron-containing Hdac7 mRNA existed in the cytosol and that ribosomes bound to a short open reading frame (sORF) within the 5'-terminal noncoding area of this Hdac7 mRNA in response to vascular endothelial growth factor (VEGF) stimulation in the isolated stem cell antigen-1 positive (Sca1+ ) vascular progenitor cells (VPCs). A 7-amino acid (7A) peptide has been demonstrated to be translated from the sORF in Sca1+ -VPCs in vitro and in vivo. The 7A peptide was shown to receive phosphate group from the activated mitogen-activated protein kinase MEKK1 and transfer it to 14-3-3 gamma protein, forming an MEKK1-7A-14-3-3γ signal pathway downstream VEGF. The exogenous synthetic 7A peptide could increase Sca1+ -VPCs cell migration, re-endothelialization in the femoral artery injury, and angiogenesis in hind limb ischemia. A Hd7-7sFLAG transgenic mice line was generated as the loss-of-function model, in which the 7A peptide was replaced by a FLAG-tagged scrabbled peptide. Loss of the endogenous 7A impaired Sca1+ -VPCs cell migration, re-endothelialization of the injured femoral artery, and angiogenesis in ischemic tissues, which could be partially rescued by the addition of the exogenous 7A/7Ap peptide. This study provides evidence that sORFs can be alternatively translated and the derived peptides may play an important role in physiological processes including vascular remodeling.
Collapse
Affiliation(s)
- Junyao Yang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK.,Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ana Moraga
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Jing Xu
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Yue Zhao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Peiyi Luo
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ka Hou Lao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Wei Ding
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Gang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Lei Zheng
- Southern Medical University, Guangzhou, People's Republic of China
| | - Zhongyi Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Wen Wang
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Alberto Smith
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Qian Wang
- Southern Medical University, Guangzhou, People's Republic of China
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
19
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
20
|
Regulation of the inflammatory response by vascular grafts modified with Aspirin-Triggered Resolvin D1 promotes blood vessel regeneration. Acta Biomater 2019; 97:360-373. [PMID: 31351251 DOI: 10.1016/j.actbio.2019.07.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/25/2022]
Abstract
The unabated inflammatory response is often the cause for inhibited vascular regeneration of transplanted small-diameter vascular grafts (diameter <6 mm) in vascular replacement therapies. We proposed that stimulating inflammatory resolution could be an effective approach for treatment of chronic vascular graft inflammation after transplantation. Aspirin-Triggered Resolvin D1 (AT-RvD1) plays critical roles in driving cellular processes toward the resolution of inflammation and suppressing downstream inflammatory signaling pathways. With the aim to facilitate vascular regeneration, we developed a polycaprolactone (PCL) vascular graft loaded with AT-RvD1. The results showed that AT-RvD1 promoted macrophage polarization into M2 macrophages in vitro. Macrophages pretreated with AT-RvD1 conditioned medium promoted endothelial cell tube formation. Furthermore, in vivo implantation was performed by replacing rat abdominal aorta. We observed fast endothelialization and enhanced smooth muscle regeneration in rats that received the AT-RvD1-containing graft implants. The presence of AT-RvD1 induced infiltration of a large number of M2 macrophages and integrin α4-positive (CD49d+) neutrophils into the graft wall after implantation. Vascular graft RNA-Seq analysis revealed that AT-RvD1 inhibited leukocyte and neutrophil migration and activation. Results also indicated that macrophage polarization to the M2 phenotype was promoted on day 7 post-implantation. These results demonstrated the ability of locally delivered AT-RvD1 to increase pro-regenerative immune subpopulations and promote vascular tissue regeneration. STATEMENT OF SIGNIFICANCE: Chronic inflammation is a key deciding factor in the failure of vascular regeneration of transplanted small-diameter vascular grafts (diameter <6 mm). Aspirin-triggered Resolvin D1 (AT-RvD1) is a critical driving force in cellular resolution inflammation and suppresses inflammatory signaling. Herein, we developed an electrospun polycaprolactone (PCL) vascular graft loaded with AT-RvD1. In vivo implantation was performed by replacing rat abdominal aorta and AT-RvD1-loaded grafts showed rapid endothelialization, enhanced capillary formation, and excellent smooth muscle regeneration by regulating inflammatory reaction and promoting its rapid resolution. Thus, our study provided new perspectives for long-term vascular graft survival and integration with the host tissue. We believe that AT-RvD1 can be widely applied in tissue engineering owing to its anti-inflammatory and therapeutic effects.
Collapse
|
21
|
Wang Z, Liu C, Xiao Y, Gu X, Xu Y, Dong N, Zhang S, Qin Q, Wang J. Remodeling of a Cell-Free Vascular Graft with Nanolamellar Intima into a Neovessel. ACS NANO 2019; 13:10576-10586. [PMID: 31483602 DOI: 10.1021/acsnano.9b04704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in cardiovascular materials have brought us improved artificial vessels with larger diameters for reducing adverse responses that drive acute thrombosis and the associated complications. Nonetheless, the challenge is still considerable when applying these materials in small-diameter blood vessels. Here we report the biomimetic design of an acellular small-diameter vascular graft with specifically lamellar nanotopography on the luminal surface via a modified freeze-cast technique. The experimental findings verify that the well-designed nanolamellar structure is able to inhibit the adherence and activation of platelets, induce oriented growth of endothelial cells, and eventually remodel a neovessel to maintain long-term patency in vivo. Furthermore, the results of numerical simulations in physically mimetic conditions reveal that the regularly lamellar nanopattern can manipulate blood flow to reduce the flow disturbance compared with random topography. Our current work not only creates a freeze-cast small-diameter vascular graft that employs topographic architecture to direct the vascular cell fates for revasculature but also rekindles confidence in biophysical cues for modulating in situ tissue regeneration.
Collapse
Affiliation(s)
| | - Chungeng Liu
- Department of Cardiovascular Surgery, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Yi Xiao
- College of Engineering and Computer Science , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | | | | | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022 , China
| | | | - Qinghua Qin
- College of Engineering and Computer Science , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | | |
Collapse
|
22
|
Wei Y, Wu Y, Zhao R, Zhang K, Midgley AC, Kong D, Li Z, Zhao Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials 2019; 204:13-24. [PMID: 30875515 DOI: 10.1016/j.biomaterials.2019.01.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Runxia Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kaiyue Zhang
- Nankai University School of Medicine, Tianjin 300071, PR China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, PR China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|