1
|
Wang M, Ou WC, Yu ZT. Porous Silicon-Supported Catalytic Materials for Energy Conversion and Storage. CHEMSUSCHEM 2024:e202401459. [PMID: 39269735 DOI: 10.1002/cssc.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Porous silicon (Si) has a tetrahedral structure similar to that of sp3-hybridized carbon atoms in a typical diamond structure, which affords it unique chemical and physical properties including an adjustable intrinsic bandgap, a high-speed carrier transfer efficiency. It has shown great potential in photocatalysis, rechargeable batteries, solar cells, detectors, and electrocatalysis. This review introduces various porous Si-supported electrocatalysts and analyzes the reasons why porous Si is used as a new carrier/active sites from the perspectives of its molecular structure, electronic properties, synthesis methods, etc. The electrochemical applications of porous Si-based electrocatalysts in energy conversion reactions such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and total water decomposition together with lithium-ion battery and supercapacitor in energy storage are summarized. The challenges and future research directions for porous Si are also discussed. This review aims to deepen the understanding of porous Si and promote the development and applications of this new type of Si material.
Collapse
Affiliation(s)
- Man Wang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Wei-Cheng Ou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
2
|
Hou J, Jie J, Wei X, Shen X, Zhao Q, Chai X, Pang H, Shen Z, Wang J, Wu L, Xu J. A core-shell-type nanosystem promotes diabetic wound healing through Photothermal-responsive release of transforming growth factor β. J Nanobiotechnology 2024; 22:449. [PMID: 39080658 PMCID: PMC11287882 DOI: 10.1186/s12951-024-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024] Open
Affiliation(s)
- Jinfei Hou
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Junjin Jie
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangqian Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qingfang Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hao Pang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
3
|
Wang N, Gan S, Mao Y, Xiao J, Xu C, Zhou T. Transition metals anchored on nitrogen-doped graphdiyne for an efficient oxygen reduction reaction: a DFT study. Phys Chem Chem Phys 2024; 26:2449-2456. [PMID: 38168706 DOI: 10.1039/d3cp03971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The search for highly active and low-cost single-atom catalysts for the oxygen reduction reaction (ORR) is essential for the widespread application of proton exchange membrane fuel cells. Transition metals anchored on nitrogen-doped graphdiyne (GDY) have attracted considerable interest as potentially excellent catalysts for the ORR. However, the relationship between the active site and nitrogen-doped GDY remains unclear. In this work, we conducted a systematic investigation of sp-hybridized N atoms anchoring single transition metal atoms of 3d and 4d on GDY (TMC2N2) as electrocatalysts for the ORR. Firstly, 18 kinds of TMC2N2 were determined to have good thermodynamic stability. Due to the extremely strong adsorption of *OH, TMC2N2 exhibits inferior ORR performance compared to traditional Pt(111). Considering that *OH adsorption hinders the catalytic activity of TMC2N2, we modified the OH ligand of TMC2N2 to develop the high-valent metal complex (TMC2N2-OH) aiming to enhance the electrocatalytic activity. The adsorption of intermediates on most TMC2N2-OH is weakened after the modification of the OH ligand, especially for the adsorption of *OH. Thus, by comparing the ORR overpotential of catalysts before and after ligand modification, we find that the catalytic activity of different TMC2N2-OHs improves to various degrees. MnC2N2-OH, TMC2N2-OH, and TcC2N2-OH exhibit relatively high ORR catalytic activity, with overpotentials of 0.93 V, 1.19 V, and 0.92 V, respectively. Furthermore, we investigated the cause of improved catalytic activity of TMC2N2-OH and found that the modified coordination environment of the catalyst led to adjusted adsorption of ORR intermediates. In summary, our work sheds light on the relationship between nitrogen-doped GDY and transition metal sites, thus contributing to the development of more efficient catalysts.
Collapse
Affiliation(s)
- Ning Wang
- School of Science, Key Laboratory of High-Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Siyu Gan
- School of Science, Key Laboratory of High-Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Yunfeng Mao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junping Xiao
- College of Physics and Electronic Information, Baicheng Normal University, Baicheng, Jilin 137000, China.
| | - Chunming Xu
- College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
4
|
Li B. Excellent Anode Performance of N-, P-, and As-Doped Graphdiynes for Lithium-Ion Batteries. ACS OMEGA 2023; 8:35077-35084. [PMID: 37779993 PMCID: PMC10536034 DOI: 10.1021/acsomega.3c04605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Recently, graphdiyne (GDY) as a two-dimensional planar carbon allotrope has received significant research attention in the fields of rechargeable batteries, catalysis, biomedicine, and so forth. However, the theoretical capacity of a perfect GDY anode is only 744 mA h/g in the configuration of LiC3, encouraging further efforts to increase the capacity. In this study, we explore the anode performance of N-, P-, and As-doped GDYs by using first-principles calculations. Ab initio molecular dynamics simulations show that the doped GDYs can remain stable at 1000 K, indicating good thermal stability. With the loss of part acetylenic linkages, the rhomboid-like pores produce more Li sites, and the theoretical capacities reach 2209, 2031, and 1681 mA h/g for the N-, P-, and As-doped GDYs, respectively. In addition, the transition-state calculations indicate that the Li diffusion barriers of the three doped GDYs are similar to the perfect GDY. This study demonstrates that doping is an effective strategy to improve the anode performance of GDY.
Collapse
Affiliation(s)
- Baoyan Li
- Department of Chemical Engineering, University College London, LondonWC1E 7JE,U.K.
| |
Collapse
|
5
|
Hu Y, Pu J, Hu Y, Zi Y, Chen H, Wang M, Huang W. Construction of Reinforced Self-Cleaning and Efficient Photothermal PDMS@GDY@Cu Sponges toward Anticorrosion and Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2381. [PMID: 37630965 PMCID: PMC10459430 DOI: 10.3390/nano13162381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Copper (Cu)-based materials are widely used in many fields from industry to life, including marine, medical apparatus and instruments, and microelectronic devices owing to their superior thermal, electrical, and mechanical properties. However, the interaction of copper with aggressive and fouling liquids under normal circumstances easily brings about severe bacterial accumulation, resulting in undesirable functionality degeneration and bacterial infections. In this contribution, we reported a novel copper-based sponge, polydimethylsiloxane (PDMS)@graphdiyne (GDY)@Cu, constructed by in situ synthesis of GDY on a commercial Cu sponge, followed by the modification of PDMS. The as-fabricated PDMS@GDY@Cu sponge not only possesses excellent self-cleaning activity against the pollution of daily drinks and dirt due to an improved static contact angle (~136°), but also display a remarkably enhanced anticorrosion performance, attributed to intimate coverage of chemically stable GDY and PDMS on the Cu sponge. Based on high photothermal effect of GDY, the PDMS@GDY@Cu sponge also displays significantly improved antibacterial activities under irradiation. In addition, due to excellent chemical stability of PDMS and GDY, self-cleaning behavior and photothermal-assisted antibacterial performance are well maintained after long-term attack of bacteria. These results demonstrate that GDY-based functional coatings hold great promises in the protection of copper devices under harsh conditions.
Collapse
Affiliation(s)
- Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yingzi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongyan Chen
- Engineering Training Center, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Bai Q, Xiong K, Zhang C, Wang L, Han W, Zhu Q, Du F, Yu WW, Sui N. Boosting charge separation in graphdiyne quantum dots/hollow tubular carbon nitride heterojunction for water pollutant degradation. J Colloid Interface Sci 2023; 646:802-814. [PMID: 37229998 DOI: 10.1016/j.jcis.2023.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Non-desirable solar energy absorption and poor charge transfer efficiency are two problems that limit the peroxymonosulfate (PMS) photocatalytic techniques. Herein, a metal-free boron-doped graphdiyne quantum dot (BGDs) modified hollow tubular g-C3N4 photocatalyst (BGD/TCN) was synthesized to activate PMS and achieved effective space separation of carriers for degradation of bisphenol A. With 0.5 mM PMS, the degradation rate of bisphenol A (20 ppm) was 0.0634 min-1, 3.7-fold higher than that of TCN itself. The roles of BGDs in the distribution of electrons and photocatalytic property were well identified by experiments and density functional theory (DFT) calculations. The possible degradation intermediate products of bisphenol A were monitored by mass spectrometer and demonstrated to be nontoxic using ecological structure activity relationship modeling (ECOSAR). Finally, this newly-designed material was successfully applied in actual water bodies, which further renders its promising prospect for actual water remediation.
Collapse
Affiliation(s)
- Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Kesi Xiong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Chaohui Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Wenhao Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Qianqian Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Fanglin Du
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| |
Collapse
|
7
|
Li M, Liu Z, Gao T, Liu S, Yu H, Wang Z, Sun H. Single-metal atom sandwiched by graphdiyne and BN-doped graphdiyne sheets as an electrocatalyst for nitrogen reduction: a first-principles study. Phys Chem Chem Phys 2023; 25:4803-4809. [PMID: 36692367 DOI: 10.1039/d2cp04898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The exploration of efficient single-atom catalysts provides a prospective pattern for the sustainable development of electrocatalytic nitrogen fixation. We systematically researched the nitrogen reduction properties of catalysts with a single transition metal (TM) atom sandwiched between BN-doped graphdiyne and graphdiyne (labeled BN-TM-G) by first-principles calculations. The TM atom in the novel sandwich structure provides electrons to the adjacent B atom, which acts as the active site, thus driving the fixation and reduction of N2. In the BN-TM-G system, the NRR catalytic activity is bound up with the positive charge polarization level of the TM atom. Among them, BN-Sc-G, BN-Ti-G, BN-V-G, and BN-Cr-G systems showed higher catalytic ability, and the competitive HER was inhibited. In particular, the lowest limiting potential of BN-Cr-G is -0.63 V is promising for the NRR catalyst.
Collapse
Affiliation(s)
- Manqi Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China. .,Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
| | - Zhenhua Liu
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
| | - Tian Gao
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
| | - Shiyao Liu
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
| | - Hong Yu
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
| | - Zhao Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China.
| | - Hao Sun
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Renmin Road 5268, Changchun, Jilin 130024, P. R. China.
| |
Collapse
|
8
|
Li J, Han X, Wang D, Zhu L, Ha‐Thi M, Pino T, Arbiol J, Wu L, Nawfal Ghazzal M. A Deprotection-free Method for High-yield Synthesis of Graphdiyne Powder with In Situ Formed CuO Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202210242. [PMID: 35985984 PMCID: PMC9825875 DOI: 10.1002/anie.202210242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/11/2023]
Abstract
With a direct band gap, superior charge carrier mobility, and uniformly distributed pores, graphdiyne (GDY) has stimulated tremendous interest from the scientific community. However, its broad application is greatly limited by the complicated multistep synthesis process including complex deprotection of hexakis-[(trimethylsilyl)ethynyl]benzene (HEB-TMS) and peeling of GDY from the substrates. Here, we describe a deprotection-free strategy to prepare GDY powder by directly using HEB-TMS as the monomer. When CuCl was used as the catalysts in DMF solvent, the yield of GDY powder reached ≈100 %. More interestingly, uniformly dispersed CuO nanoparticles with an average diameter of ≈2.9 nm were in situ formed on GDY after the reaction. The prepared CuO/GDY was demonstrated an excellent co-catalyst for photocatalytic hydrogen evolution, comparable to the state-of-art Pt co-catalyst. The deprotection-free approach will widen the use of GDY and facilitate its scaling up to industrial level.
Collapse
Affiliation(s)
- Jian Li
- Université Paris-SaclayUMR 8000 CNRSInstitut de Chimie Physique91405OrsayFrance
| | - Xu Han
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193 Barcelona, CataloniaSpain
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Lei Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190P. R. China
| | - Minh‐Huong Ha‐Thi
- Université Paris-SaclayCNRSInstitut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Thomas Pino
- Université Paris-SaclayCNRSInstitut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193 Barcelona, CataloniaSpain
- ICREAPg. Lluís Companys 2308010Barcelona, CataloniaSpain
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190P. R. China
| | | |
Collapse
|
9
|
Li M, Lv Q, Si W, Hou Z, Huang C. Sp‐Hybridized Nitrogen as New Anchoring Sites of Iron Single Atoms to Boost the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202208238. [DOI: 10.1002/anie.202208238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Meiping Li
- Science Center for Material Creation and Energy Conversion School of Chemistry and Chemical Engineering Institute of Frontier and Interdisciplinary Science Shandong University Jinan 250100 P. R. China
| | - Qing Lv
- Science Center for Material Creation and Energy Conversion School of Chemistry and Chemical Engineering Institute of Frontier and Interdisciplinary Science Shandong University Jinan 250100 P. R. China
| | - Wenyan Si
- Qingdao institute of Bioenergy and Bioprocess Technology Chinese Academy of Science No. 189 Songling Road Qingdao 266101 P. R. China
| | - Zhufeng Hou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Changshui Huang
- Institute of Chemistry Chinese Academy of Science Zhongguancun North First Street 2 Beijing 100191 P. R. China
- Qingdao institute of Bioenergy and Bioprocess Technology Chinese Academy of Science No. 189 Songling Road Qingdao 266101 P. R. China
| |
Collapse
|
10
|
Ma K, Wu J, Wang X, Sun Y, Xiong Z, Dai F, Bai H, Xie Y, Kang Z, Zhang Y. Periodically Interrupting Bonding Behavior to Reformat Delocalized Electronic States of Graphdiyne for Improved Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202211094. [DOI: 10.1002/anie.202211094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhaozhao Xiong
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Fulong Dai
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Haokun Bai
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
11
|
Ma K, Wu J, Wang X, Sun Y, Xiong Z, Dai F, Bai H, Xie Y, Kang Z, Zhang Y. Periodically Interrupting Bonding Behavior to Reformat Delocalized Electronic States of Graphdiyne for Improved Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kaikai Ma
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Jing Wu
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Xin Wang
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Yu Sun
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Zhaozhao Xiong
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Fulong Dai
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Haokun Bai
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Yong Xie
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Zhuo Kang
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Yue Zhang
- University of Science and Technology Beijing No. 30, Xueyuan Road, Haidian District Beijing CHINA
| |
Collapse
|
12
|
Li J, Han X, Wang D, Zhu L, Ha-Thi MH, Pino T, Arbiol J, Wu LZ, Ghazzal MN. A Deprotection‐free Method for High‐yield Synthesis of Graphdiyne Powder with in‐situ Formed CuO Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Li
- Université Paris-Saclay UFR Sciences: Universite Paris-Saclay Faculte des Sciences d'Orsay Institut de Chimie Physique FRANCE
| | - Xu Han
- Institute of Nanoscience and Nanotechnology: Instituto de Nanociencia y Nanotecnologia Catalan Institute of Nanoscience and Nanotechnology FRANCE
| | - Dongmei Wang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences CHINA
| | - Lei Zhu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry key laboratory of photochemical conversion and optoelectronic materials CHINA
| | - Minh-Huong Ha-Thi
- Paris-Saclay University Faculty of Science Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay ISMO FRANCE
| | - Thomas Pino
- Paris-Saclay University Faculty of Science Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay ISMO FRANCE
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology: Institut Catala de Nanociencia i Nanotecnologia ICREA SPAIN
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences CHINA
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay Faculté des Sciences d'Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay Institut de chimie physique UMR8000 - Université Paris-Saclay Bâtiment 349 - Campus d’Orsay15, avenue Jean Perrin 91405 Orsay FRANCE
| |
Collapse
|
13
|
Li M, Lv Q, Si W, Hou Z, Huang C. Sp‐hybridized Nitrogen as New Anchoring Sites of Iron Single Atoms to Boost the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meiping Li
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qing Lv
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Wenyan Si
- Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences Qingdao Institute of BioEnergy and Bioprocess Technology CHINA
| | - Zhufeng Hou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Fujian Institute of Research on the Structure of Matter CHINA
| | - Changshui Huang
- The Qingdao Institute of Bioenergy and BioprocessTechnology, Chinese Academy of Science 189 Songling Road , Laoshan District , Qingdao 266101 Qingdao CHINA
| |
Collapse
|
14
|
Shi G, Xie Y, Du L, Fu X, Chen X, Xie W, Lu T, Yuan M, Wang M. Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO
2
Reduction to CH
4. Angew Chem Int Ed Engl 2022; 61:e202203569. [DOI: 10.1002/anie.202203569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Guodong Shi
- College of Science Henan University of Technology Zhengzhou 450001 China
| | - Yunlong Xie
- Institute of Advanced Materials Hubei Normal University Huangshi 435002 China
| | - Lili Du
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xinliang Fu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaojie Chen
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Wangjing Xie
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Tong‐Bu Lu
- School of Materials Science and Engineering Institute for New Energy Materials & Low Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Mei Wang
- School of Materials Science and Engineering Institute for New Energy Materials & Low Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
15
|
Chen X, Zheng X, Qi L, Xue Y, Li Y. Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water Splitting. ACS MATERIALS AU 2022; 2:321-329. [PMID: 36855385 PMCID: PMC9928194 DOI: 10.1021/acsmaterialsau.1c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sp-C-hybridized alkyne bonds present the natural advantages of interacting with metal atoms and have the ability to generate a large number of new catalytic active sites on the surface and the interfaces, thus greatly promoting the efficient progress of various light/electrochemical reactions. In this work, we have successfully fabricated a novel type of interfacial structure containing sp-C-Mo/O bonds and mixed Mo valence states with outstanding catalytic activity and stability for photoelectrocatalytic (PEC) overall water splitting in a wide pH range (0-14), due to the presence of sp-carbon-rich graphdiyne. For example, in alkaline conditions (pH = 14), the overpotentials of oxygen and hydrogen evolution reactions at 10 mA cm-2 are 165 and 8 mV. When being used as an electrolyzer, the cell voltage of this catalyst is only 1.40 V to achieve 10 mA cm-2. The high PEC activity of graphdiyne@molybdenum oxide originates from the conversion of chemical bonds at the sp-C hybrid interface and the coexistence of multivalent states of molybdenum, triggering a large number of catalytic active sites, greatly promoting charge transfer and lowering water dissociation energy.
Collapse
Affiliation(s)
- Xi Chen
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuchen Zheng
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lu Qi
- Science
Center for Material Creation and Energy Conversion, Institute of Frontier
and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Yurui Xue
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Science
Center for Material Creation and Energy Conversion, Institute of Frontier
and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Yuliang Li
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
16
|
Yan L, Huang L, Hu T, Ai Y, Wang B, Sun W. Synthesis of sp-hybridized nitrogen doped ultrathin graphdiyne and application to the electrochemical detection for 6,7-dihydroxycoumarin. Talanta 2022; 242:123295. [DOI: 10.1016/j.talanta.2022.123295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022]
|
17
|
Du Y, Zheng X, Xue Y, Li Y. Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Yuan M, Shi G, Xie Y, Du L, Fu X, Chen X, Xie W, Lu TB, Wang M. Constructing Cu‐C Bond in Graphdiyne‐Regulated Cu Single Atom Electrocatalyst for CO2 Reduction to CH4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjian Yuan
- Nankai University College of Chemistry College of Chemistry Weijin Road 94, Nankai District 300071 Tianjin CHINA
| | - Guodong Shi
- Henan University of Technology College of Science 请选择 CHINA
| | - Yunlong Xie
- Hubei Normal University Institute of Advanced Materials CHINA
| | - Lili Du
- Nankai University college of Chemistry CHINA
| | - Xinliang Fu
- Nankai University college of Chemistry CHINA
| | | | | | - Tong-Bu Lu
- Tianjin University of Technology school of materials science and engineering CHINA
| | - Mei Wang
- Tianjin University of Technology school of materials science and engineering CHINA
| |
Collapse
|
19
|
Shi M, Sun X, Bai Q, Zhang Y, Yu S, Liu M, Wang L, Yu WW, Sui N. Graphdiyne/graphene heterostructure supported NiFe layered double hydroxides for oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Luo Y, Li M, Dai Y, Zhao R, Jiang F, Wang S, Huang Y. Transition Metal-Modified Co 4 Clusters Supported on Graphdiyne as an Effective Nitrogen Reduction Reaction Electrocatalyst. Inorg Chem 2021; 60:18251-18259. [PMID: 34787415 DOI: 10.1021/acs.inorgchem.1c02880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conversion of N2 into NH3 through the electrochemical nitrogen reduction reaction (NRR) under ambient conditions represents a novel green ammonia synthesis method. The main obstacle for NRR is lack of efficient, stable, and cost-effective catalysts. In this work, by using density functional theory calculations, 16 transition metal-modified Co4 clusters supported on graphdiyne (GDY) as potential NRR catalysts were systematically screened. Through the examinations of stability, N2 activation, selectivity, and activity, Ti-, V-, Cr-, Mn-, and Zr-Co3@GDY were identified as the promising candidates toward NRR. Further explorations on the NRR mechanisms and the Pourbaix diagrams suggest that Ti-Co3@GDY was the most promising candidate catalyst, as it has the lowest limiting potential and high stability under the working conditions. The high activities originate from the synergy effect, where the Co3 cluster acts as the electron donor and the heteroatom serves as the single active site throughout the NRR process. Our results offer a new perspective for advancing sustainable NH3 production.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| | - Mengyuan Li
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| | - Yuxin Dai
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| | - Renqiang Zhao
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| | - Fan Jiang
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| | - Sufan Wang
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
21
|
Zhao S, Guo Z, Yang J, Wang C, Sun B, Wang G. Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007431. [PMID: 33728756 DOI: 10.1002/smll.202007431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Recent research shows that the continuing importance of carbon anode materials plays an important role in the development of sodium-ion batteries. Nevertheless, the practical deployment of sodium-ion batteries still faces many challenges such as mediocre sodium storage capability and short cycle life. Therefore, it is imperative to explore improvement methods to boost their competitiveness. Herein, various nanoengineering strategies, including nanostructure design, defect and heteroatom doping, and nanocomposite optimization, are proposed as reliable and effective approaches to improve electrochemical performances and structural stability of carbon-based anode materials for sodium-ion batteries (SIBs). The feasibility of nanoengineering is highlighted as a promising approach to develop next-generation carbon materials for sodium-ion batteries.
Collapse
Affiliation(s)
- Shuoqing Zhao
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Ziqi Guo
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Jian Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Bing Sun
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
22
|
Gao L, Yang Z, Li X, Huang C. Post-modified Strategies of Graphdiyne for Electrochemical Applications. Chem Asian J 2021; 16:2185-2194. [PMID: 34196117 DOI: 10.1002/asia.202100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The new carbon material graphdiyne (GDY) has been verified to have a great application prospect in electrochemical field. In order to study its properties and expand its scope of application, various experiments including structural control tests are imposed on GDY. Among them, as one of the most commonly used methods to modify the structure, heteroatom doping is favored for its advantages in synthesis methods and the control of mechanical, electrical and even magnetic properties of carbon materials. According to the published studies, the top-down methods of doping heteroatoms for GDY only need cheap raw materials, simple synthetic route and strong controllability, which is conducive to rapid performance breakthroughs in electrochemical applications. This review selects the typical cases in the development of that post-modification method from the application of GDY in the electrochemical field. Here, based on the existed reports, the commonly used non-metal elements (such as nitrogen, sulfur) and metal elements (such as iron) have been introduced to post-modify GDY. Then, a detailed analysis is made for corresponding electrochemical applications, such as energy storage and electrocatalysis. Finally, the challenges and prospects of post-modified GDY in synthesis and electrochemical applications are proposed. This review provides us a useful guidance for the development of high-quality GDY suitable for electrochemical applications.
Collapse
Affiliation(s)
- Lei Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Ze Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Xiaodong Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Zhu X, Hu Y, Wu G, Chen W, Bao N. Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications. ACS NANO 2021; 15:9273-9298. [PMID: 34018737 DOI: 10.1021/acsnano.1c02356] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soft electro-chemo-mechanical actuators have received enormous interest in biomimetic technologies, wearable electronics, and microelectromechanical systems due to their low voltage-driven large deformation, fast response, high strain, and working durability. Two-dimensional (2D) nanosheets, which can highly promote ion-induced micromotion to macrodeformation, have outstandingly been used as prime actuator electrodes because of their ordered microstructures, tunable interlayer spaces, controllable electrochemical activities, and excellent electrical and mechanical properties. Here, this review primarily focuses on the recent advances in key 2D electro-chemo-mechanical actuator electrodes, including graphene, MXenes, graphitic carbon nitride, molybdenum disulfide, black phosphorus, and graphdiyne. Various synthetic strategies of electrode design, such as microstructural architecture, active-site regulation, and channel construction, for achieving high ionic kinetic transport, charge storage, and electrochemical-mechanical performances are discussed. The advanced structures with diverse building principles that provide ordered and active ionic pathways for high actuation speed and strain are emphasized. Furthermore, the innovative applications of electro-chemo-mechanical actuators toward biomimetic robots and smart devices are highlighted. Finally, the current challenges and future perspectives are also proposed. The aim of this review is to provide the guiding significance for scientific researchers and industrial engineers to design higher performance next-generation electro-chemo-mechanical actuators.
Collapse
Affiliation(s)
- Xiaolin Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Ying Hu
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong 999077, P.R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| |
Collapse
|
24
|
Yu Z, Chen XM, Liu ZY, Wang M, Huang S, Yang H. A phase-dependent photoluminescent discotic liquid crystal bearing a graphdiyne substructure. Chem Commun (Camb) 2021; 57:911-914. [PMID: 33393549 DOI: 10.1039/d0cc05959e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, graphdiyne and its derivatives with fascinating electro-optic properties have attracted tremendous scientific attention. Here we design and synthesize a graphdiyne-derived discotic liquid crystal material by decorating six wedge-shaped 3,4,5-tris(dodecyloxy)benzoate groups on the fundamental structural unit of graphdiyne, the dehydrotribenzo[18]annulene core. This graphdiyne-derived liquid crystal material exhibits a cubic phase and a hexagonal columnar phase at varied temperatures. Most interestingly, this molecule displays a tunable phase-dependent photoluminescence behavior. Under the irradiation of 365 nm wavelength ultraviolet light, the luminescent material emits pale blue, green and azure light in the cubic, hexagonal columnar and isotropic phases respectively. This graphdiyne-derived discotic liquid crystal with excellent optical characteristics might have application potentials in organic optoelectronic functional materials and devices.
Collapse
Affiliation(s)
- Zhen Yu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Xu-Man Chen
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Zhi-Yang Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Meng Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Shuai Huang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Hong Yang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| |
Collapse
|
25
|
Li Y, He J, Shen H. Journey from Small-Molecule Diyne Structures to 2D Graphdiyne: Synthetic Strategies. Chemistry 2020; 26:12310-12321. [PMID: 32496650 DOI: 10.1002/chem.202001898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Indexed: 11/06/2022]
Abstract
Graphdiyne (GDY) exhibits unique characteristics of a highly conjugated π system, evenly distributed nanopores, and a direct band gap. This has encouraged multidisciplinary research groups to investigate its application in energy conversion and storage, catalysts, electronic devices, sensing, and separation. Herein, the achievements of synthetic strategies for preparing small-molecule diyne structures (GDY substructure), 1D nanoribbons, and 2D GDY are presented. These studies may help future investigations into the basic structure-related properties of GDY and synthetic methodology for the future developments of GDY-related 2D carbon materials.
Collapse
Affiliation(s)
- Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Han Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
26
|
Wu Q, Yang L, Wang X, Hu Z. Carbon-Based Nanocages: A New Platform for Advanced Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904177. [PMID: 31566282 DOI: 10.1002/adma.201904177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Indexed: 05/23/2023]
Abstract
Energy storage and conversion play a crucial role in modern energy systems, and the exploration of advanced electrode materials is vital but challenging. Carbon-based nanocages consisting of sp2 carbon shells feature a hollow interior cavity with sub-nanometer microchannels across the shells, high specific surface area with a defective outer surface, and tunable electronic structure, much different from the intensively studied nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make carbon-based nanocages a new platform for advanced energy storage and conversion. Up-to-date synthetic strategies of carbon-based nanocages, the utilization of their unique porous structure and morphology for the construction of composites with foreign active species, and their significant applications to the advanced energy storage and conversion are reviewed. Structure-performance correlations are discussed in depth to highlight the contribution of carbon-based nanocages. The research challenges and trends are also envisaged for deepening and extending the study and application of this multifunctional material.
Collapse
Affiliation(s)
- Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
27
|
Bai Y, Hu Z, Jiang JX, Huang F. Hydrophilic Conjugated Materials for Photocatalytic Hydrogen Evolution. Chem Asian J 2020; 15:1780-1790. [PMID: 32293789 DOI: 10.1002/asia.202000247] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Indexed: 12/29/2022]
Abstract
Photocatalytic hydrogen evolution is viewed as a promising green strategy to utilize the inexhaustible solar energy and provide clean hydrogen fuels with zero-emission characteristic. The nature of semiconductor-based photocatalysts is the key point to achieve efficient photocatalytic hydrogen evolution. Conjugated materials have been recently emerging as a novel class of photocatalysts for hydrogen evolution and photocatalytic reactions due to their electronic properties can be well controlled via tailor-made chemical structures. Hydrophilic conjugated materials, a subgroup of conjugated materials, possess multiple advantages for photocatalytic applications, thus spurring remarkable progress on both material realm and photocatalytic applications. This minireview aims to provide a brief review of the recent developments of hydrophilic conjugated polymers/small molecules for photocatalytic applications, and special concern on the rational molecular design and their impact on photocatalytic performance will be reviewed. Perspectives on the hydrophilic conjugated materials and challenges to their applications in the photocatalytic field are also presented.
Collapse
Affiliation(s)
- Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
28
|
Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angew Chem Int Ed Engl 2020; 59:13021-13027. [DOI: 10.1002/anie.202004213] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Fang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yurui Xue
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongjun Li
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huidi Yu
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lan Hui
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuxin Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chengyu Xing
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chao Zhang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Danyan Zhang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhongqiang Wang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xi Chen
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yang Gao
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 P. R. China
| | - Yuliang Li
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
29
|
Fang Y, Xue Y, Li Y, Yu H, Hui L, Liu Y, Xing C, Zhang C, Zhang D, Wang Z, Chen X, Gao Y, Huang B, Li Y. Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan Fang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yurui Xue
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yongjun Li
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huidi Yu
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lan Hui
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuxin Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chengyu Xing
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chao Zhang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Danyan Zhang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhongqiang Wang
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xi Chen
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yang Gao
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR 999077 P. R. China
| | - Yuliang Li
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
Lei L, Huang D, Zhou C, Chen S, Yan X, Li Z, Wang W. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213177] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Guo Y, Liu J, Yang Q, Ma L, Zhao Y, Huang Z, Li X, Dong B, Fu XZ, Zhi C. Metal-Tuned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907341. [PMID: 32049440 DOI: 10.1002/smll.201907341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Different from graphene with the highly stable sp2 -hybridized carbon atoms, which shows poor controllability for constructing strong interactions between graphene and guest metal, graphdiyne has a great potential to be engineered because its high-reactive acetylene linkages can effectively chelate metal atoms. Herein, a hydrogen-substituted graphdiyne (HsGDY) supported metal catalyst system through in situ growth of Cu3 Pd nanoalloys on HsGDY surface is developed. Benefiting from the strong metal-chelating ability of acetylenic linkages, Cu3 Pd nanoalloys are intimately anchored on HsGDY surface that accordingly creates a strong interaction. The optimal HsGDY-supported Cu3 Pd catalyst (HsGDY/Cu3 Pd-750) exhibits outstanding electrocatalytic activity for the oxygen reduction reaction (ORR) with an admirable half-wave potential (0.870 V), an impressive kinetic current density at 0.75 V (57.7 mA cm-2 ) and long-term stability, far outperforming those of the state-of-the-art Pt/C catalyst (0.859 V and 15.8 mA cm-2 ). This excellent performance is further highlighted by the Zn-air battery using HsGDY/Cu3 Pd-750 as cathode. Density function theory calculations show that such electrocatalytic performance is attributed to the strong interaction between Cu3 Pd and CC bonds of HsGDY, which causes the asymmetric electron distribution on two carbon atoms of CC bond and the strong charge transfer to weaken the shoulder-to-shoulder π conjugation, eventually facilitating the ORR process.
Collapse
Affiliation(s)
- Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jianwen Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Longtao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Binbin Dong
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
32
|
Zhou W, Shen H, Zeng Y, Yi Y, Zuo Z, Li Y, Li Y. Controllable Synthesis of Graphdiyne Nanoribbons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Weixiang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
33
|
Zhou W, Shen H, Zeng Y, Yi Y, Zuo Z, Li Y, Li Y. Controllable Synthesis of Graphdiyne Nanoribbons. Angew Chem Int Ed Engl 2020; 59:4908-4913. [DOI: 10.1002/anie.201916518] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Weixiang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Department of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
34
|
Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9068-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Liu X, Xu M, Han Y, Meng C. Adsorption, diffusion and aggregation of Ir atoms on graphdiyne: a first-principles investigation. Phys Chem Chem Phys 2020; 22:25841-25847. [DOI: 10.1039/d0cp05197g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Shifting the atomic diffusion thermodynamics, e.g. with involvement reactants, etc., would initiate the thermodynamically favorable aggregation of Ir atoms into clusters on graphdiyne.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
| | - Meng Xu
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
| | - Yu Han
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals
- Department of Chemistry
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
| |
Collapse
|
36
|
Gao J, Wang Y, Wu H, Liu X, Wang L, Yu Q, Li A, Wang H, Song C, Gao Z, Peng M, Zhang M, Ma N, Wang J, Zhou W, Wang G, Yin Z, Ma D. Construction of a sp
3
/sp
2
Carbon Interface in 3D N‐Doped Nanocarbons for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Gao
- State Key Laboratory of Separation Membranes and Membrane Processes Department of Chemical Engineering Tianjin Polytechnic University 399 Binshui West Road Tianjin 300387 China
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering Tianjin Polytechnic University Tianjin 300387 China
| | - Yun Wang
- Centre for Clean Environment and Energy, Gold Coast Campus Griffith University Queensland 4222 Australia
| | - Haihua Wu
- State Key Laboratory of Catalysis CAS Center for Excellence in Nanoscience Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xi Liu
- SynCat@Beijing Synfuels China Technology Co., Ltd. Beijing 101407 China
| | - Leilei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes Department of Chemical Engineering Tianjin Polytechnic University 399 Binshui West Road Tianjin 300387 China
| | - Qiaolin Yu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| | - Aowen Li
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 China
| | - Hong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes Department of Chemical Engineering Tianjin Polytechnic University 399 Binshui West Road Tianjin 300387 China
- School of Materials Science and Engineering Tianjin Polytechnic University Tianjin 300387 China
| | - Chuqiao Song
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| | - Mengtao Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| | - Na Ma
- School of Materials Science and Engineering Tianjin Polytechnic University Tianjin 300387 China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis CAS Center for Excellence in Nanoscience Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Yin
- State Key Laboratory of Separation Membranes and Membrane Processes Department of Chemical Engineering Tianjin Polytechnic University 399 Binshui West Road Tianjin 300387 China
- Tianjin Key Laboratory of Green Chemical Technology and Process Engineering Tianjin Polytechnic University Tianjin 300387 China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT Peking University Beijing 100871 China
| |
Collapse
|
37
|
Gao J, Wang Y, Wu H, Liu X, Wang L, Yu Q, Li A, Wang H, Song C, Gao Z, Peng M, Zhang M, Ma N, Wang J, Zhou W, Wang G, Yin Z, Ma D. Construction of a sp 3 /sp 2 Carbon Interface in 3D N-Doped Nanocarbons for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2019; 58:15089-15097. [PMID: 31444841 DOI: 10.1002/anie.201907915] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Indexed: 11/05/2022]
Abstract
The development of highly efficient metal-free carbon electrocatalysts for the oxygen reduction reaction (ORR) is one very promising strategy for the exploitation and commercialization of renewable and clean energy, but this still remains a significant challenge. Herein, we demonstrate a facile approach to prepare three-dimensional (3D) N-doped carbon with a sp3 /sp2 carbon interface derived from ionic liquids via a simple pyrolysis process. The tunable hybrid sp3 and sp2 carbon composition and pore structures stem from the transformation of ionic liquids to polymerized organics and introduction of a Co metal salt. Through tuning both composition and pores, the 3D N-doped nanocarbon with a high sp3 /sp2 carbon ratio on the surface exhibits a superior electrocatalytic performance for the ORR compared to that of the commercial Pt/C in Zn-air batteries. Density functional theory calculations suggest that the improved ORR performance can be ascribed to the existence of N dopants at the sp3 /sp2 carbon interface, which can lower the theoretical overpotential of the ORR.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tianjin Polytechnic University, 399 Binshui West Road, Tianjin, 300387, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China.,Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yun Wang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Haihua Wu
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xi Liu
- SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Leilei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tianjin Polytechnic University, 399 Binshui West Road, Tianjin, 300387, China
| | - Qiaolin Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Aowen Li
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tianjin Polytechnic University, 399 Binshui West Road, Tianjin, 300387, China.,School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Chuqiao Song
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Mengtao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| | - Na Ma
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, CAS Center for Excellence in Nanoscience, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhen Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, Department of Chemical Engineering, Tianjin Polytechnic University, 399 Binshui West Road, Tianjin, 300387, China.,Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China
| |
Collapse
|
38
|
Kong F, Zhang W, Sun L, Huo L, Zhao H. Interface Electronic Coupling in Hierarchical FeLDH(FeCo)/Co(OH) 2 Arrays for Efficient Electrocatalytic Oxygen Evolution. CHEMSUSCHEM 2019; 12:3592-3601. [PMID: 31087548 DOI: 10.1002/cssc.201900943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Indexed: 05/14/2023]
Abstract
The oxygen evolution reaction (OER) with sluggish kinetics is the key half-cell reaction for several sustainable energy systems, such as electrochemical water splitting, fuel cells, and rechargeable metal-air batteries. Two-dimensional transition-metal hydroxides have good prospects for the OER. Herein, 2D hierarchical FeLDH(FeCo)/Co(OH)2 (LDH=layered double hydroxide) arrays were fabricated by growing 2D-ZIF-67 (ZIF=zeolitic imidazolate framework) on carbon cloth, transformation of 2D-ZIF-67 into Co(OH)2 , and electrodeposition of FeLDH(FeCo) on Co(OH)2 at ambient temperature. The optimized hierarchical catalyst exhibits high OER activity that requires a small overpotential of only 242 mV to drive 10 mA cm-2 (279 mV for 100 mA cm-2 ) and prolonged durability for 100 h at 20 mA cm-2 in 1 m KOH. The FeLDH(FeCo)/Co(OH)2 interfaces are observed to be the electrocatalytically active centers for the OER. The interfaces contribute to accelerating the OER kinetics owing to fast transfer of intermediate oxygen species. Furthermore, the FeCo alloy promotes electron transfer among the newly formed interfaces related to CoOOH in the OER process, which leads to improved durability. This work gives insight into the design and synthesis of hierarchical bimetallic hydroxide arrays with high OER activity and durability, as well as understanding of the origin of the OER promotion by metals and metal hydroxides.
Collapse
Affiliation(s)
- Fanhao Kong
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Liping Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
39
|
Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Fluorographdiyne: A Metal‐Free Catalyst for Applications in Water Reduction and Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chengyu Xing
- College of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yurui Xue
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong SAR 999077 P. R. China
| | - Huidi Yu
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lan Hui
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan Fang
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuxin Liu
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Zhao
- College of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Zhibo Li
- College of Polymer Science and EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yuliang Li
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
40
|
Xing C, Xue Y, Huang B, Yu H, Hui L, Fang Y, Liu Y, Zhao Y, Li Z, Li Y. Fluorographdiyne: A Metal-Free Catalyst for Applications in Water Reduction and Oxidation. Angew Chem Int Ed Engl 2019; 58:13897-13903. [PMID: 31309671 DOI: 10.1002/anie.201905729] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/27/2022]
Abstract
A highly efficient bifunctional metal-free catalyst was prepared by growth of three-dimensional porous fluorographdiyne networks on carbon cloth (p-FGDY/CC). Our experiments and density functional theory (DFT) calculations show the 3D p-FGDY/CC network is highly active and it is a high potential metal-free catalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as overall water splitting (OWS) under both acidic and alkaline conditions. The experimental and theoretical results show very good consistency; for example, in the HER process, p-FGDY/CC exhibits small overpotentials of 82 and 92 mV to achieve 10 mA cm-2 under alkaline and acidic conditions, respectively. This ensures an even higher selectivity for the adsorption/desorption of various O/H intermediate species. The essential key promotion accomplishes a bifunctional H2 O redox performance application under pH-universal electrochemical conditions.
Collapse
Affiliation(s)
- Chengyu Xing
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Huidi Yu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lan Hui
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuxin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
41
|
Kumar A, Vashistha VK. Design and synthesis of Co IIHMTAA-14/16 macrocycles and their nano-composites for oxygen reduction electrocatalysis. RSC Adv 2019; 9:13243-13248. [PMID: 35520816 PMCID: PMC9063917 DOI: 10.1039/c9ra02169h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
The major concerns in the design of macrocycle based-ORR catalysts are: (i) understanding the macrocyclic, π-conjugation, central metal and substituent effects on ORR electrocatalysis; and (ii) the use of macrocycles on the electrode surface for the retention of ORR activity because of their poor stability. In this work, we demonstrated the aromaticity/π-electron conjugation effect on ORR activity by using the same macrocycles [HMTAA-14 and 16 (hexamethyltetraaza [14] and [16] annulenes)] with a difference in their macrocyclic cavity/π-electron conjugation. The macrocycles CoIIHMTAA-14 and CoIIHMTAA-16 and their nanocomposites with highly conductive carbon black were prepared by a microwave-assisted method and characterized by using multiple spectroscopy techniques. Comparative redox and oxygen reduction activity studies of CoIIHMTAA-14 and CoIIHMTAA-16 were undertaken by using cyclic voltammetry and linear sweep voltammetry in an alkaline medium. The composite CoIIHMTAA-16@C showed good ORR activity compared to CoIIHMTAA-14@C in O2-saturated KOH electrolyte. Since the CoIIHMTAA-14 and CoIIHMTAA-16 systems have a similar central atom and substituents, the shift of the ORR peak position in the +ive potential region for HMTAA-16 can be attributed to the difference in the size of the macrocyclic cavity (macrocyclic effect) and the extra stability of HMTAA-16 annulene due to its aromaticity.
Collapse
Affiliation(s)
- Anuj Kumar
- Beijing University of Chemical Technology Beijing China-100096
| | | |
Collapse
|
42
|
Ai Y, Hu Z, Liu L, Zhou J, Long Y, Li J, Ding M, Sun H, Liang Q. Magnetically Hollow Pt Nanocages with Ultrathin Walls as a Highly Integrated Nanoreactor for Catalytic Transfer Hydrogenation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802132. [PMID: 30989031 PMCID: PMC6446610 DOI: 10.1002/advs.201802132] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/29/2018] [Indexed: 05/31/2023]
Abstract
Fabricating efficient and stable nanocatalysts for chemoselective hydrogenation of nitroaromatics is highly desirable because the amines hold tremendous promise for the synthesis of nitrogen containing chemicals. Here, a highly reactive and stable porous carbon nitride encapsulated magnetically hollow platinum nanocage is developed with subnanometer thick walls (Fe3O4@snPt@PCN) for this transformation. This well-controlled nanoreactor is prepared via the following procedures: the preparation of core template, the deposition of platinum nanocage with subnanometer thick walls, oxidative etching, and calcination. This highly integrated catalyst demonstrates excellent performance for the catalytic transfer hydrogenation of various nitroaromatics and the reaction can reach >99% conversion and >99% selectivity. With the ultrathin wall structure, the atom utilization of platinum atoms is highly efficient. The X-ray photoelectron spectroscopy results indicate that partial electrons transfer from the iron oxides to Pt nanowalls, and this increases the electron density of snPt nanoparticles, thus promoting the catalytic activity for the transfer hydrogenation of nitroaromatics. For the reduction of 4-nitrophenol, the reaction rate constant K app is 0.23 min-1 and the turnover frequency (TOF) is up to 3062 h-1. Additional reaction results illustrate that this magnetic nanoreactor can be reused more than eight times and it is a promising catalytic nanoplatform in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yongjian Ai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Beijing Key Lab of Microanalytical Methods & InstrumentationDepartment of ChemistryCenter for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
| | - Zenan Hu
- Department of ChemistryNortheastern UniversityShenyang110819P. R. China
| | - Lei Liu
- Department of ChemistryNortheastern UniversityShenyang110819P. R. China
| | - Junjie Zhou
- Department of ChemistryNortheastern UniversityShenyang110819P. R. China
| | - Yang Long
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Beijing Key Lab of Microanalytical Methods & InstrumentationDepartment of ChemistryCenter for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
| | - Jifan Li
- Department of ChemistryNortheastern UniversityShenyang110819P. R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Beijing Key Lab of Microanalytical Methods & InstrumentationDepartment of ChemistryCenter for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
| | - Hong‐Bin Sun
- Department of ChemistryNortheastern UniversityShenyang110819P. R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Beijing Key Lab of Microanalytical Methods & InstrumentationDepartment of ChemistryCenter for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
43
|
Gao X, Liu J, Sun Y, Wang X, Geng Z, Shi F, Wang X, Zhang W, Feng S, Wang Y, Huang K. Optimized Co2+(Td)–O–Fe3+(Oh) electronic states in a spinel electrocatalyst for highly efficient oxygen evolution reaction performance. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00852g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The introduction of iron into Co3O4 can induce a change in the electronic states of Co3+, which is an effective means to regulate the oxygen evolution reaction activity.
Collapse
|