1
|
Yang X, Zhu B, Gao Z, Yang C, Zhou J, Han A, Liu J. A Vacuum Vapor Deposition Strategy to Fe Single-Atom Catalysts with Densely Active Sites for High-Performance Zn-Air Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306594. [PMID: 38751152 PMCID: PMC11425844 DOI: 10.1002/advs.202306594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 09/27/2024]
Abstract
Iron single-atom catalysts (SACs) have garnered increasing attention as highly efficient catalysts for the oxygen reduction reaction (ORR), yet their performance in practical devices remains suboptimal due to the low density of accessible active sites. Anchoring iron single atoms on 2D support is a promising way to increase the accessible active sites but remains difficult attributing to the high aggregation tendency of iron atoms on the 2D support. Herein, a vacuum vapor deposition strategy is presented to fabricate an iron SAC supported on ultrathin N-doped carbon nanosheets with densely active sites (FeSAs-UNCNS). Experimental analyses confirm that the FeSAs-UNCNS achieves densely accessible active sites (1.11 × 1020 sites g-1) in the configuration of Fe─N4O. Consequently, the half-wave potential of FeSAs-UNCNS in 0.1 m KOH reaches a remarkable value of 0.951 V versus RHE. Moreover, when employed as the cathode of various kinds of Zn-air batteries, FeSAs-UNCNS exhibits boosting performances by achieving a maximum power density of 306 mW cm-2 and long cycle life (>180 h) at room temperature, surpassing both Pt/C and reported SACs. Further investigations reveal that FeSAs-UNCNS facilitates the mass and charge transfer during catalysis and the atomic configuration favors the desorption of *OH kinetically.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baohui Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhiyang Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingbo Zhou
- Baidu Research, Haidian District, Beijing, 100193, P. R. China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Yin H, Bai X, Zhang F, Yang Z. Dual single atomic Ni sites constructing Janus hollow graphene for boosting electrochemical sensing of glucose. Mikrochim Acta 2024; 191:314. [PMID: 38720024 DOI: 10.1007/s00604-024-06377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
Single atom catalysts (SACs) have attracted attention due to their excellent catalysis activity under specific reactions and conditions. However, the low density of SACs greatly limits catalytic performance. The three-dimensional graphene hollow nanospheres (GHSs) with very thin shell structure can be used as excellent carrier materials. Not only can its outer surface be used to anchor metal single atoms, but its inner surface can also provide rich sites. Here, a novel step-by-step assembly strategy is reported to anchor nickel single atoms (Ni SAs) on the inner and outer surfaces of GHSs (Ni SAs/GHSs/Ni SAs), which significantly increases the loading capacity of Ni SAs (4.8 wt%). Compared to conventional materials that only anchor Ni SAs to the outer surface of the carrier (Ni SAs/GHSs), Ni SAs/GHSs/Ni SAs exhibits significantly higher electrocatalytic activity toward glucose oxidation in alkaline media. The sensitivity of Ni SAs/GHSs/Ni SAs/GCE is nearly five times higher than that of Ni SAs/GHSs/GCE. Moreover, the sensor based on Ni SAs/GHSs/Ni SAs can detect glucose in a wide concentration range of 0.8 µM-1.1244 mM with a low detection limit of 0.19 µM (S/N = 3). This study not only provides an effective sensing material for glucose detection, but also opens a new avenue to construct high-density metal SACs.
Collapse
Affiliation(s)
- Hang Yin
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Xiao Bai
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Fanjun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China
| | - Ziyin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, People's Republic of China.
| |
Collapse
|
3
|
Lu G, Men X, Tang R, Wang Z, Cui H, Zheng T, Wang M, Yang H, Liu Z. Bionic Fe-N-C catalyst with abundant exposed Fe-N x sites and enhanced mass transfer properties for efficient oxygen reduction. J Colloid Interface Sci 2024; 655:90-99. [PMID: 37925972 DOI: 10.1016/j.jcis.2023.10.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Transition metal and nitrogen co-doped carbon electrocatalysts are promising candidates to replace the precious metal platinum (Pt) in oxygen reduction reactions (ORR). Unfortunately, the electrochemical performance of existing electrocatalysts is restricted due to limited accessibility of active sites. Inspired by jellyfish tentacles, we design an efficient ORR micro-reactor called Fe-Nx/HC@NWs. It features abundant exposed Fe-Nx active sites dispersed on nitrogen-doped cubic carbon cages, which have a hierarchically porous and hairy structure. The accessible, atomically dispersed Fe-Nx sites and the elaborate substrate architecture synergize to provide the catalyst withremarkable ORR catalytic activity, extraordinary long-term stability, and favorable methanol tolerance in an alkaline electrolyte; overall, its performance is comparable to that of commercial carbon-supported Pt. Our synthesis is facile and controllable, paving a new avenue toward advanced non-precious metal-based electrocatalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xin Men
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Ruoqi Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhida Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hao Cui
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Tongxi Zheng
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Mi Wang
- Engineering College, Changchun Normal University, Changchun 130032, China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
4
|
Ma J, Zhang W, Yang F, Zhang Y, Xu X, Liu G, Xu H, Liu G, Wang Z, Pei S. Preparation of Fe-BN-C catalysts derived from ZIF-8 and their performance in the oxygen reduction reaction. RSC Adv 2024; 14:4607-4613. [PMID: 38318614 PMCID: PMC10839553 DOI: 10.1039/d3ra07188j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Enhancing the oxygen reduction reaction (ORR) activity and stability of the fuel cell cathode electrocatalysts and reducing their costs are critical. In response to this need, Fe, B, and N co-doped hollow mesoporous carbon materials were prepared by a simple chemical doping one-step pyrolysis method using ZIF-8 as a precursor. The results showed that the optimized catalyst displayed a higher limiting current density (6.154 mA cm-2) and half-wave potential (0.859 V), which showed significant enhancement compared with the Pt/C catalyst (5.487 mA cm-2 and 0.853 V). Moreover, the optimized catalyst had outstanding long-term stability with a current density retention higher than 91% after 36 000 s of stability testing. This work provides a facile strategy for the design of outstanding ORR performance of non-precious metal oxygen reduction catalysts.
Collapse
Affiliation(s)
- Jialu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Wei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Feng Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Yingge Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Xiaojun Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Guipeng Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Huiyu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Gaochong Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Zhihui Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| | - Supeng Pei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
5
|
Shi Y, Luo B, Liu R, Sang R, Cui D, Junge H, Du Y, Zhu T, Beller M, Li X. Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid. Angew Chem Int Ed Engl 2023; 62:e202313099. [PMID: 37694769 DOI: 10.1002/anie.202313099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu-N-C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN6 moieties with double-N-bridged adjacent metal-N4 clusters decorated on a nitrogen-doped carbon support. At optimal conditions the dehydrogenation performance of the nanostructured material (mass activity 77.7 L ⋅ gmetal -1 ⋅ h-1 ) is up to 40 times higher compared to commercial 5 % Pd/C. In situ spectroscopic and kinetic isotope effect experiments indicate that Co/Cu-N-C promoted formic acid dehydrogenation follows the so-called formate pathway with the C-H dissociation of HCOO* as the rate-determining step. Theoretical calculations reveal that Cu in the CoCuN6 moiety synergistically contributes to the adsorption of intermediate HCOO* and raises the d-band center of Co to favor HCOO* activation and thereby lower the reaction energy barrier.
Collapse
Affiliation(s)
- Yanzhe Shi
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Bingcheng Luo
- College of Science, China Agricultural University, Beijing, 100083, P. R. China
| | - Runqi Liu
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Rui Sang
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Dandan Cui
- Centre of Quantum and Matter Sciences International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Henrik Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Yi Du
- Centre of Quantum and Matter Sciences International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiang Li
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
6
|
Bai J, Tang Y, Lin C, Jiang X, Zhang C, Qin H, Zhou Q, Xiang M, Lian Y, Deng Y. Iron clusters regulate local charge distribution in Fe-N 4 sites to boost oxygen electroreduction. J Colloid Interface Sci 2023; 648:440-447. [PMID: 37302227 DOI: 10.1016/j.jcis.2023.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
The atomically-dispersed and nitrogen-coordinated iron (FeNC) on a carbon catalyst is a potential non-noble metal catalyst that can replace precious metal electrocatalysts. However, its activity is often unsatisfactory owing to the symmetric charge distribution around the iron matrix. In this study, atomically- dispersed Fe-N4 and Fe nanoclusters loaded with N-doped porous carbon (FeNCs/FeSAs-NC-Z8@34) were rationally fabricated by introducing homologous metal clusters and increasing the N content of the support. FeNCs/FeSAs-NC-Z8@34 exhibited a half-wave potential of 0.918 V, which exceeded that of the commercial benchmark Pt/C catalyst. Theoretical calculations verified that introducing Fe nanoclusters can break the symmetric electronic structure of Fe-N4, thus inducing charge redistribution. Furthermore, it can optimize a part of Fe 3d occupancy orbitals and accelerate OO fracture in OOH* (rate-determining step), thus significantly improving oxygen reduction reaction activity. This work provides a reasonably advanced pathway to modulate the electronic structure of the single-atom center and optimize the catalytic activity of single-atom catalysts.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yiming Tang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Cheng Lin
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Xiankai Jiang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Chunyong Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hengfei Qin
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Quanfa Zhou
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Mei Xiang
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yuebin Lian
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Yaoyao Deng
- Research Center of secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
7
|
Liu H, Liu C, Zong X, Wang Y, Hu Z, Zhang Z. Role of the Support Effects in Single-Atom Catalysts. Chem Asian J 2023; 18:e202201161. [PMID: 36635222 DOI: 10.1002/asia.202201161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
In recent years, single-atom catalysts (SACs) have received a significant amount of attention due to their high atomic utilization, low cost, high reaction activity, and selectivity for multiple catalytic reactions. Unfortunately, the high surface free energy of single atoms leads them easily migrated and aggregated. Therefore, support materials play an important role in the preparation and catalytic performance of SACs. Aiming at understanding the relationship between support materials and the catalytic performance of SACs, the support effects in SACs are introduced and reviewed herein. Moreover, special emphasis is placed on exploring the influence of the type and structure of supports on SAC catalytic performance through advanced characterization and theoretical research. Future research directions for support materials are also proposed, providing some insight into the design of SACs with high efficiency and high loading.
Collapse
Affiliation(s)
- Huimin Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Chang Liu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Xing Zong
- School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Yongfei Wang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China.,School of Materials and Metallurgy, University of Science and Technology Liaoning Anshan, Liaoning, 114051, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
8
|
Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conversion Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Co nanoparticles/N-doped carbon nanotubes: Facile synthesis by taking Co-based complexes as precursors and electrocatalysis on oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
11
|
Wang H, Chen X, Sun T, Li Y, Lv X, Li Y, Wang H. Cobalt nanoparticles embedded into nitrogen-doped graphene with abundant macropores as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Chem Asian J 2022; 17:e202200390. [PMID: 35582772 DOI: 10.1002/asia.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/12/2022] [Indexed: 11/11/2022]
Abstract
Nitrogen doped carbon materials containing transition metal nanoparticles have attracted much attention as bifunctional oxygen electrocatalysts. In this paper, the template etching method is used to obtain the nitrogen-doped graphene with abundant macropores embedded with cobalt nanoparticles (Co@N-C). The prepared Co@NC-800 catalyst has a half-wave potential (E 1/2= 0.835V) close to Pt/C and good stability in excess of Pt/C for oxygen reduction reaction (ORR). At the same time, the catalyst has good oxygen evolution reaction (OER) performance. In addition, zinc-air batteries (ZABs) based on the Co@NC-800 catalyst show good cycle stability of up to 200000 s and high power density of 73.5 mW cm -2 . The synergistic effect of the integrated component between nitrogen-doped graphene and cobalt nanoparticles as well as the macroporous structure endow Co@NC-800 with abundant exposed active sites and mass/electron transfer capacity, thus leading to the high electrocatalytic activity. This work shows potential for practical applications in electrochemistry.
Collapse
Affiliation(s)
- Han Wang
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Xinyu Chen
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Tiantian Sun
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Yanwei Li
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Xiaoling Lv
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Yanhui Li
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Hengguo Wang
- Northeast Normal University, Faculty of Chemistry, 7989 Weixing Road, 130022, Changchun, CHINA
| |
Collapse
|
12
|
Huang K, Wei Z, Liu J, Gong Z, Liu J, Yan M, He G, Gong H, Hu Y, He Y, Zhao S, Ye G, Fei H. Engineering the Morphology and Microenvironment of a Graphene-Supported Co-N-C Single-Atom Electrocatalyst for Enhanced Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201139. [PMID: 35388966 DOI: 10.1002/smll.202201139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Graphene-supported single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the technologically important hydrogen evolution reaction (HER), but their performances are limited by the low intrinsic activity and insufficient mass transport. Herein, a highly HER-active graphene-supported Co-N-C SAC is reported with unique design features in the morphology of the substrate and the microenvironment of the single metal sites: i) the crumpled and scrolled morphology of the graphene substrate circumvents the issues encountered by stacked nanoplatelets, resulting in improved exposure of the electrode/electrolyte interfaces (≈10 times enhancement); ii) the in-plane holes in graphene preferentially orientate the Co atoms at the edge sites with low-coordinated Co-N3 configuration that exhibits enhanced intrinsic activity (≈2.6 times enhancement compared to the conventional Co-N4 moiety), as evidenced by detailed experiments and density functional theory calculations. As a result, this catalyst exhibits significantly improved HER activity with an overpotential (η) of merely 82 mV at 10 mA cm-2 , a small Tafel slope of 59.0 mV dec-1 and a turnover frequency of 0.81 s-1 at η = 100 mV, ranking it among the best Co-N-C SACs.
Collapse
Affiliation(s)
- Kang Huang
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering Guangxi University, Nanning, 530004, China
| | - Jianbin Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhichao Gong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jingjing Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Minmin Yan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - GuanChao He
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haisheng Gong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongfeng Hu
- Canadian Light Source, Inc. (CLSI), Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Yongmin He
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering Guangxi University, Nanning, 530004, China
| | - Gonglan Ye
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huilong Fei
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
13
|
Zhang W, Xia Y, Chen S, Hu Y, Yang S, Tie Z, Jin Z. Single-Atom Metal Anchored Zr 6-Cluster-Porphyrin Framework Hollow Nanocapsules with Ultrahigh Active-Center Density for Electrocatalytic CO 2 Reduction. NANO LETTERS 2022; 22:3340-3348. [PMID: 35412833 DOI: 10.1021/acs.nanolett.2c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing earth-abundant electrocatalysts toward highly efficient CO2 reduction has significant importance to decrease the global emission of greenhouse gas. Herein, we propose an efficient strategy to anchor non-noble metal single atoms on Zr6-cluster-porphyrin framework hollow nanocapsules with well-defined and abundant metal-N4 porphyrin sites for efficient electrochemical CO2 reduction. Among different transition metal single atoms (Mn, Fe, Co, Ni, and Cu), Co single-atom anchored Zr6-cluster-porphyrin framework hollow nanocapsules demonstrated the highest activity and selectivity for CO production. The rich Co-N4 active centers and hierarchical porous structure contribute to enhanced CO2 adsorption capability and moderate binding strength of reaction intermediates, thus facilitating *CO desorption and CO2-to-CO conversion. The Co-anchored nanocapsules maintain high efficiency and well-preserved stability during long-term electrocatalysis tests. Moreover, the Co-anchored nanocapsules exhibit a remarkable solar-to-CO energy conversion efficiency of 12.5% in an integrated solar-driven CO2 reduction/O2 evolution electrolysis system when powered by a custom large-area [Cs0.05(FA0.85MA0.15)0.95]Pb0.9(I0.85Br0.15)3-based perovskite solar cell.
Collapse
Affiliation(s)
- Wenjun Zhang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuren Xia
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience, University of Science and Technology of China Hefei, Hefei, Anhui 230029, China
| | - Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Songyuan Yang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, China
| |
Collapse
|
14
|
Wang T, Feng J, Liu Q, Han X, Wu D. Facile Synthesis of Amino Acids-derived Fe/N-codoped Reduced Graphene Oxide for Enhanced ORR Electrocatalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Hollow carbon cavities decorated with highly dispersed manganese-nitrogen moieties for efficient metal-air batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wang L, Guo S, Hu Z, Shen B, Zhou W. Biomass Waste‐Derived Electrocatalyst Constructed with g‐C
3
N
4
as a Multifunctional Template for Efficient Oxygen Reduction Reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liyan Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control School of Energy and Environmental Engineering Hebei University of Technology Tianjin 300401 P. R. China
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Sheng‐Qi Guo
- Tianjin Key Laboratory of Clean Energy and Pollutant Control School of Energy and Environmental Engineering Hebei University of Technology Tianjin 300401 P. R. China
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control School of Energy and Environmental Engineering Hebei University of Technology Tianjin 300401 P. R. China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control School of Energy and Environmental Engineering Hebei University of Technology Tianjin 300401 P. R. China
| | - Wei Zhou
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
17
|
Zhang F, Wang L, Park M, Song KY, Choi H, Shi H, Lee HJ, Pang H. Nickel sulfide nanorods decorated on graphene as advanced hydrogen evolution electrocatalysts in acidic and alkaline media. J Colloid Interface Sci 2022; 608:2633-2640. [PMID: 34758920 DOI: 10.1016/j.jcis.2021.10.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Nowadays, the fabrication of robust and earth-abundant hydrogen evolution electrocatalysts with noble-metal-like catalytic activities is still facing great challenges. In this report, nanorod (NR)-shaped nickel sulfide (NiS) is successfully decorated on graphene (Gr) by utilizing carbon cloth (CC) as a substrate (NiS-Gr-CC). Benefiting from the NR morphology and strong interfacial synergetic effect between NiS and Gr, the NiS-Gr-CC electrocatalyst shows good catalytic activity for hydrogen evolution reaction (HER). Specifically, the low Tafel slopes of 46 and 56 mV dec-1 along with the small overpotentials of 66 and 71 mV at 10 mA cm-2 are obtained in the acidic and alkaline electrolytes, respectively. Density functional theory results indicate that the combination of NiS and Gr can optimize the adsorption energy of H* during the HER process. The long-term durability measurement result reveals that our NiS-Gr-CC heterostructure has good electrocatalytic cycling stability (∼80 h) in both acidic and alkaline electrolytes. These results confirm that the NiS-Gr-CC heterostructure is a promising candidate for hydrogen evolution electrocatalyst with high catalytic activity.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Interdisciplinary Course of Physics and Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea
| | - Lisha Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China
| | - Mose Park
- Department of Smart Fab. Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea
| | - Kyeong-Youn Song
- SKKU Advanced Institude of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea
| | - Hoon Choi
- Department of Smart Fab. Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, PR China.
| | - Hoo-Jeong Lee
- Department of Interdisciplinary Course of Physics and Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea; SKKU Advanced Institude of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea; Department of Smart Fab. Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do, Republic of Korea.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
18
|
Guo Y, Zhang S, Zhang R, Wang D, Zhu D, Wang X, Xiao D, Li N, Zhao Y, Huang Z, Xu W, Chen S, Song L, Fan J, Chen Q, Zhi C. Electrochemical Nitrate Production via Nitrogen Oxidation with Atomically Dispersed Fe on N-Doped Carbon Nanosheets. ACS NANO 2022; 16:655-663. [PMID: 34936346 DOI: 10.1021/acsnano.1c08109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic N2 oxidation (NOR) into nitrate is a potential alternative to the emerging electrochemical N2 reduction (NRR) into ammonia to achieve a higher efficiency and selectivity of artificial N2 fixation, as O2 from the competing oxygen evolution reaction (OER) potentially favors the oxygenation of NOR, which is different from the parasitic hydrogen evolution reaction (HER) for NRR. Here, we develop an atomically dispersed Fe-based catalyst on N-doped carbon nanosheets (AD-Fe NS) which exhibits an exceptional catalytic NOR capability with a record-high nitrate yield of 6.12 μ mol mg-1 h-1 (2.45 μ mol cm-2 h-1) and Faraday efficiency of 35.63%, outperforming all reported NOR catalysts and most well-developed NRR catalysts. The isotopic labeling NOR test validates the N source of the resultant nitrate from the N2 electro-oxidation catalyzed by AD-Fe NS. Experimental and theoretical investigations identify Fe atoms in AD-Fe NS as active centers for NOR, which can effectively capture N2 molecules and elongate the N≡N bond by the hybridization between Fe 3d orbitals and N 2p orbitals. This hybridization activates N2 molecules and triggers the subsequent NOR. In addition, a NOR-related pathway has been proposed that reveals the positive effect of O2 derived from the parasitic OER on the NO3- formation.
Collapse
Affiliation(s)
- Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Donghong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Daming Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuewan Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Diwen Xiao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, Hong Kong
| |
Collapse
|
19
|
Co/Co
2
P Nanoparticles Encapsulated within Hierarchically Porous Nitrogen, Phosphorus, Sulfur Co‐doped Carbon as Bifunctional Electrocatalysts for Rechargeable Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
21
|
Lu Y, Zou S, Li J, Li C, Liu X, Dong D. Fe, B, and N Codoped Carbon Nanoribbons Derived from Heteroatom Polymers as High-Performance Oxygen Reduction Reaction Electrocatalysts for Zinc-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13018-13026. [PMID: 34696592 DOI: 10.1021/acs.langmuir.1c02100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For zinc-air batteries, it is of great importance to heighten the oxygen reduction reaction (ORR) activity of cathode electrocatalysts. Herein, we synthesized carbon nanoribbons doped with Fe, B, and N as high-activity ORR electrocatalysts by a templating method. Benefiting from the melamine fiber (MF) and B doping, the as-prepared carbon nanoribbon has a high specific surface area, and the improved turnover frequency of Fe sites increases the ORR activity. The as-synthesized Fe-B-N-C electrocatalyst shows an improved half-wave potential and limited current density compared to Fe-N-C, B-N-C, and N-C. Moreover, zinc-air batteries with the Fe-B-N-C electrocatalyst exhibit a higher specific capacity and better long-term durability compared to those with commercial Pt/C. This work provides an effective strategy to synthesize noble-metal-free electrocatalysts for wide applications of zinc-air batteries.
Collapse
Affiliation(s)
- Yue Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shanbao Zou
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiajie Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chenyu Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dehua Dong
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
22
|
Sun H, Lin Y, Takeshi H, Wang X, Wu D, Tian Y. Synthesis of 3D graphene-based materials and their applications for removing dyes and heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52625-52650. [PMID: 34448139 DOI: 10.1007/s11356-021-15649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Contamination of water streams by dyes and heavy metals has become a major problem due to their persistence, accumulation, and toxicity. Therefore, it is essential to eliminate and/or reduce these contaminants before discharge into the natural environment. In recent years, 3D graphene has drawn intense research interests owing to its large surface area, superior charge conductivity, and thermal conductivity properties. Due to their unique surface and structural properties, 3D graphene-based materials (3D GBMs) are regarded as ideal adsorbents for decontamination and show great potential in wastewater or exhaust gas treatment. Here, this minireview summarizes the recent progress on 3D GBMs synthesis and their applications for adsorbing dyes and heavy metals from wastewater based on the structures and properties of 3D GBMs, which provides valuable insights into 3D GBMs' application in the environmental field.
Collapse
Affiliation(s)
- Hefei Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Yan Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hagio Takeshi
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Deyi Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanqin Tian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
23
|
Tian H, Song A, Tian H, Liu J, Shao G, Liu H, Wang G. Single-atom catalysts for high-energy rechargeable batteries. Chem Sci 2021; 12:7656-7676. [PMID: 34168819 PMCID: PMC8188463 DOI: 10.1039/d1sc00716e] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Clean and sustainable electrochemical energy storage has attracted extensive attention. It remains a great challenge to achieve next-generation rechargeable battery systems with high energy density, good rate capability, excellent cycling stability, efficient active material utilization, and high coulombic efficiency. Many catalysts have been explored to promote electrochemical reactions during the charge and discharge process. Among reported catalysts, single-atom catalysts (SACs) have attracted extensive attention due to their maximum atom utilization efficiency, homogenous active centres, and unique reaction mechanisms. In this perspective, we summarize the recent advances of the synthesis methods for SACs and highlight the recent progress of SACs for a new generation of rechargeable batteries, including lithium/sodium metal batteries, lithium/sodium-sulfur batteries, lithium-oxygen batteries, and zinc-air batteries. The challenges and perspectives for the future development of SACs are discussed to shed light on the future research of SACs for boosting the performances of rechargeable batteries.
Collapse
Affiliation(s)
- Hao Tian
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Broadway Sydney NSW 2007 Australia
| | - Ailing Song
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Broadway Sydney NSW 2007 Australia
- State Key Laboratory of Metastable Materials Science and Technology, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Huajun Tian
- Key Laboratory of Power Station Energy Transfer Conversion and System of MOE, School of Energy Power and Mechanical Engineering, North China Electric Power University Beijing 102206 China
| | - Jian Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- DICP-Surrey Joint Centre for Future Materials, Advanced Technology Institute, Department of Chemical and Process Engineering, University of Surrey Guildford Surrey GU2 7XH UK
| | - Guangjie Shao
- State Key Laboratory of Metastable Materials Science and Technology, College of Environmental and Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Hao Liu
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Broadway Sydney NSW 2007 Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney Broadway Sydney NSW 2007 Australia
| |
Collapse
|
24
|
Zhu L, Wei T, Yu R, Tu W, Dai Z. A versatile switchable dual-modal colorimetric and photoelectrochemical biosensing strategy via light-controlled sway of a signal-output transverter. Chem Commun (Camb) 2021; 57:3223-3226. [PMID: 33645600 DOI: 10.1039/d1cc00324k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A design criterion to construct a versatile dual-modal colorimetric and PEC biosensing platform for switching the corresponding mode freely is proposed via integration of a natural enzyme, light-activated nanozyme and light-controlled swayable signal-output transverter. A switchable dual-modal platform toward DNA analysis is developed as a proof of concept.
Collapse
Affiliation(s)
- Lingling Zhu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | | | | | | | |
Collapse
|
25
|
Yan X, Ha Y, Wu R. Binder-Free Air Electrodes for Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. SMALL METHODS 2021; 5:e2000827. [PMID: 34927848 DOI: 10.1002/smtd.202000827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Indexed: 06/14/2023]
Abstract
Designing an efficient air electrode is of great significance for the performance of rechargeable zinc (Zn)-air batteries. However, the most widely used approach to fabricate an air electrode involves polymeric binders, which may increase the interface resistance and block electrocatalytic active sites, thus deteriorating the performance of the battery. Therefore, binder-free air electrodes have attracted more and more research interests in recent years. This article provides a comprehensive overview of the latest advancements in designing and fabricating binder-free air electrodes for electrically rechargeable Zn-air batteries. Beginning with the fundamentals of Zn-air batteries and recently reported bifunctional active catalysts, self-supported air electrodes for liquid-state and flexible solid-state Zn-air batteries are then discussed in detail. Finally, the conclusion and the challenges faced for binder-free air electrodes in Zn-air batteries are also highlighted.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yuan Ha
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
26
|
Chen K, Kim S, Je M, Choi H, Shi Z, Vladimir N, Kim KH, Li OL. Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N 4/N-Doped Carbon (M = Fe, Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc-Air Batteries. NANO-MICRO LETTERS 2021; 13:60. [PMID: 34138279 PMCID: PMC8187693 DOI: 10.1007/s40820-020-00581-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
As bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen-carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M = Fe, Co) carbon catalysts with a production rate as high as 10 mg min-1. The Co-N4/NC presented a bifunctional potential drop of ΔE = 0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE = 0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption-desorption mechanisms. In a practical Zn-air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g-1) and power density (101.62 mW cm-2), exceeding those of Pt/C-Ru/C (700.8 mAh g-1 and 89.16 mW cm-2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge-discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal-air batteries.
Collapse
Affiliation(s)
- Kai Chen
- Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Republic of Korea
| | - Seonghee Kim
- Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Republic of Korea
| | - Minyeong Je
- Theoretical Materials and Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Heechae Choi
- Theoretical Materials and Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany.
| | - Zhicong Shi
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Nikola Vladimir
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10002, Zagreb, Croatia
| | - Kwang Ho Kim
- Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Republic of Korea.
- Global Frontier R&D Center for Hybrid Interface Materials, 30 Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Oi Lun Li
- Department of Materials Science and Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan, 609-735, Republic of Korea.
| |
Collapse
|
27
|
Li Z, Li K, Ma S, Dang B, Li Y, Fu H, Du J, Meng Q. Activation of peroxymonosulfate by iron-biochar composites: Comparison of nanoscale Fe with single-atom Fe. J Colloid Interface Sci 2021; 582:598-609. [DOI: 10.1016/j.jcis.2020.08.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
28
|
Hu L, Shang C, Wang X, Zhou G. Hollow Carbon Nanocubes as Oxygen Reduction Reaction Electrocatalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202003344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Le Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
| | - Chaoqun Shang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- National Center for International Research on Green Optoelectronics South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- International Academy of Optoelectronics at Zhaoqing South China Normal University Zhaoqing 526060 China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- National Center for International Research on Green Optoelectronics South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- International Academy of Optoelectronics at Zhaoqing South China Normal University Zhaoqing 526060 China
| |
Collapse
|
29
|
Direct solid-state growth of Fe/N Co-doped coordination structure between carbon nanotubes and ultra-thin porous carbon nanosheets towards oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we synthesized new materials based on Fe(II) phthalocyanine (FePc), urea and carbon black pearls (BP), called Fe-N-C, as electrocatalysts for the oxygen reduction reaction (ORR) in neutral solution. The electrocatalysts were prepared by combining ball-milling and pyrolysis treatments, which affected the electrochemical surface area (ECSA) and electrocatalytic activity toward ORR, and stability was evaluated by cyclic voltammetry and chronoamperometry. Ball-milling allowed us to increase the ECSA, and the ORR activity as compared to the Fe-N-C sample obtained without any ball-milling. The effect of a subsequent pyrolysis treatment after ball-milling further improved the electrocatalytic stability of the materials. The set of results indicated that combining ball-milling time and pyrolysis treatments allowed us to obtain Fe-N-C catalysts with high catalytic activity toward ORR and stability which makes them suitable for microbial fuel cell applications.
Collapse
|
31
|
Li X, Ni L, Zhou J, Xu L, Lu C, Yang G, Ding W, Hou W. Encapsulation of Fe nanoparticles into an N-doped carbon nanotube/nanosheet integrated hierarchical architecture as an efficient and ultrastable electrocatalyst for the oxygen reduction reaction. NANOSCALE 2020; 12:13987-13995. [PMID: 32578658 DOI: 10.1039/d0nr02618b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exploration of cost-effective, highly efficient and robust electrocatalysts toward the oxygen reduction reaction (ORR) is of paramount significance for the advancement of future renewable energy conversion devices, and yet still remains a great challenge. Herein, we demonstrate a straightforward one-step pyrolysis strategy for the scalable synthesis of an iron-nitrogen-carbon hierarchically nanostructured catalyst, in which Fe-based nanoparticles are encapsulated in bamboo-like N-doped carbon nanotubes in situ rooted from porous N-doped carbon nanosheets (Fe@N-C NT/NSs). The delicate fabrication of such an 0D/1D/2D integrated hierarchical architecture with encased Fe species and open configuration renders the formed Fe@N-C NT/NSs with sufficient confined active sites, reduced charge transfer resistance, improved diffusion kinetics and outstanding mechanical strength. As such, compared with commercial Pt/C, the optimized Fe@N-C NT/NSs catalyst exhibits efficient ORR activity, superior durability and strong tolerance to methanol in KOH medium. More impressively, when assembled as a cathode catalyst in a microbial fuel cell, the Fe@N-C NT/NSs electrode displays significantly enhanced power density and output voltage in comparison with commercial Pt/C, holding great promise in practical energy conversion devices. What's more, the simple yet reliable synthesis strategy developed here may shed light on the future design of advanced high-efficiency hierarchical architectures for diverse electrochemical applications and beyond.
Collapse
Affiliation(s)
- Xiaoge Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sun Q, Xu H, Du Y. Recent Achievements in Noble Metal Catalysts with Unique Nanostructures for Liquid Fuel Cells. CHEMSUSCHEM 2020; 13:2540-2551. [PMID: 32096317 DOI: 10.1002/cssc.201903381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In recent years, research efforts have been focused on the design and fabrication of highly efficient catalysts for liquid fuel cells, because the use of these cells is an important approach for alleviating environmental pollution and energy crises. However, the limitations of the catalytic performance of industrial Pt/C have strongly hindered the development of these fuel cells. The catalyst morphology has a strong impact on its performance; nanostructured catalysts are preferred as they offer large specific surface area and more exposed active centers. In view of this, many catalysts with unique structures have been synthesized in recent years, all of which show excellent catalytic performance characteristics. Despite these achievements, few efforts have been made to survey this field comprehensively. Herein, the recent advances in catalysts for liquid fuel cells are summarized, with a focus on noble metal catalysts with unique morphologies such as nanowires, nanosheets, and assembly structures. Their formation mechanisms are discussed critically. The relationship between the unique morphologies and excellent performance of these catalysts is also explored. This work may provide guidelines for the further development of liquid fuel cells.
Collapse
Affiliation(s)
- Qiwen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
33
|
de Oliveira MAC, Ficca VCA, Gokhale R, Santoro C, Mecheri B, D’Epifanio A, Licoccia S, Atanassov P. Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04537-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Yan XH, Meng Z, Prabhu P, Xu H, Xue T, Fang G, Lee JM. Self-Supported Fe–N–C Electrocatalyst via Pyrolysis of EDTAFeNa Adsorbed on SBA-15 for the Oxygen Reduction Reaction. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiang-Hui Yan
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
- Key Laboratory of Powder Material & Advance Ceramics, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Ziwei Meng
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - P. Prabhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Hao Xu
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Tong Xue
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Guoli Fang
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
35
|
Li JS, Huang MJ, Chen XN. Enhancing the oxygen reduction reaction with three-dimensional graphene hollow nanosphere supported single-atomic cobalt catalyst. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00805b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-dimensional graphene hollow nanospheres supported single-atomic cobalt catalyst shows superior electrocatalytic activity, long-term stability, and excellent methanol tolerance for the oxygen reduction reaction in alkaline media.
Collapse
Affiliation(s)
- Ji-Sen Li
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Meng-Jie Huang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Xiao-Nan Chen
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| |
Collapse
|
36
|
Liu Q, Wang J, Zhang J, Yan Y, Qiu X, Wei S, Tang Y. In situ immobilization of isolated Pd single-atoms on graphene by employing amino-functionalized rigid molecules and their prominent catalytic performance. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02110h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isolated Pd single atoms anchored on graphene demonstrate a catalytic activity that is 21.3 times higher than that of Pd/C in the RhB hydrogenation reaction.
Collapse
Affiliation(s)
- Qicheng Liu
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jingchun Wang
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jingzi Zhang
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yawei Yan
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Shaohua Wei
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
- Yancheng Institute of Technology
| | - Yawen Tang
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| |
Collapse
|
37
|
Li JS, Huang MJ, Kong LX, Chen XN, Zhou YW, Li JL, Wang MY. Ruthenium Nanoparticles Anchored on Graphene Hollow Nanospheres Superior to Platinum for the Hydrogen Evolution Reaction in Alkaline Media. Inorg Chem 2019; 59:930-936. [DOI: 10.1021/acs.inorgchem.9b03201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ji-Sen Li
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Meng-Jie Huang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Ling-Xin Kong
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Xiao-Nan Chen
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Yu-Wei Zhou
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Jun-Lei Li
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| | - Ming-Yu Wang
- Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, China
| |
Collapse
|
38
|
Khannanov A, Il'yasov I, Kiiamov A, Vakhitov I, Kirgizov A, Lamberov A, Dimiev AM. Catalytic properties of graphene oxide/palladium composites as a function of the fabrication method. NEW J CHEM 2019. [DOI: 10.1039/c9nj04967c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we used a two-step synthetic procedure to prepare palladium nanoparticles (Pd-NP) on a graphenic support by impregnating graphene oxide (GO) with Pd(ii) ions with subsequent thermal or chemical reduction of palladium.
Collapse
Affiliation(s)
- Artur Khannanov
- Laboratory for Advanced Carbon Nanomaterials
- Kazan Federal University
- Kazan 420008
- Russian Federation
| | - Ildar Il'yasov
- Physical Chemistry Department
- Kazan Federal University
- Kazan 420008
- Russian Federation
| | - Airat Kiiamov
- Laboratory for Advanced Carbon Nanomaterials
- Kazan Federal University
- Kazan 420008
- Russian Federation
| | - Iskander Vakhitov
- Laboratory for Advanced Carbon Nanomaterials
- Kazan Federal University
- Kazan 420008
- Russian Federation
| | - Alexey Kirgizov
- Physical Chemistry Department
- Kazan Federal University
- Kazan 420008
- Russian Federation
| | - Alexander Lamberov
- Physical Chemistry Department
- Kazan Federal University
- Kazan 420008
- Russian Federation
| | - Ayrat M. Dimiev
- Laboratory for Advanced Carbon Nanomaterials
- Kazan Federal University
- Kazan 420008
- Russian Federation
| |
Collapse
|