1
|
Zhang Z, Zhang Q, Wei X, Xiao Z, Zhu S, Fu S, Sun H, Florica C, Peng J, Xia R. Dual-Color Lasers in Interlayer-Free Solution Processed Polymeric Bilayer Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39797-39806. [PMID: 37561419 DOI: 10.1021/acsami.3c05515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Multiwavelength organic lasers have attracted considerable interest in recent years due to the cost efficiency, wide luminescence coverage, and simple processability of organics. In this work, by simply spin coating immiscible polymeric gain media in sequence, dual-wavelength (blue-green or blue-red) amplified spontaneous emission (ASE) was achieved in bilayer devices. The blue emission, water/alcohol-soluble conjugated polyelectrolyte, poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), was used as the bottom layer. The commercially available nonpolar solvent soluble polymer poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) and its blend with poly(3-hexylthiophene) (P3HT) were used as the top active layers offering green and red emission, respectively. This novel compact configuration, without interlayers between the two active layers, offers potential for developing various applications. The carefully selected top and bottom layer polymers not only meet the conditions of immiscibility and different emission wavelength range but also have a common absorption band in UV, which allows simultaneous blue-green or blue-red dual-color ASE behaviors observed in the bilayer devices under the same 390 nm laser excitation. By introducing two-dimension (2D) square distributed feedback (DFB) gratings with different periods (300 nm for blue, 330 nm for green, and 390 nm for red) as cavities, single mode blue-green (Eth = 245 μJ cm-2) and blue-red (Eth = 189 μJ cm-2) lasers were achieved by focusing the excitation laser spot on different 2D DFB gratings area. Furthermore, we found it possible to gain sufficient light confinement for red emission along its diagonal direction (Λ ∼424 nm), whereas the 2D DFB gratings offer feedback for blue emission from the 300 nm period along the rectangle direction. Therefore, both blue and red lasers were eventually achieved in the same PFN-Br/F8BT:P3HT bilayer device on the single 2D DFB gratings with a period of 300 nm in this work.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| | - Qi Zhang
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xuanxuan Wei
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| | - Zihan Xiao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| | - Shan Zhu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| | - Shuai Fu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| | - Huizhi Sun
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| | - Camelia Florica
- Nanofabrication Core Lab (NCL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ruidong Xia
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu-Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, China
| |
Collapse
|
2
|
Zou Y, Guo J, Liu Y, Du Y, Pu Y, Wang D. Process intensified synthesis of luminescent poly(9,9-dioctylfluorene- alt-benzothiadiazole) and polyvinyl alcohol based shape memory polymeric nanocomposite sensors toward cold chain logistics information monitoring. Polym Chem 2023. [DOI: 10.1039/d2py01588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Luminescent shape memory polymeric nanocomposite sensors prepared using poly(9,9-dioctylfluorene-alt-benzothiadiazole) and polyvinyl alcohol for cold chain logistics information monitoring.
Collapse
Affiliation(s)
- Yuanzuo Zou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingzhou Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yinglu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yudi Du
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Pu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Organic Semiconductor Micro/Nanocrystals for Laser Applications. Molecules 2021; 26:molecules26040958. [PMID: 33670286 PMCID: PMC7918292 DOI: 10.3390/molecules26040958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Organic semiconductor micro/nanocrystals (OSMCs) have attracted great attention due to their numerous advantages such us free grain boundaries, minimal defects and traps, molecular diversity, low cost, flexibility and solution processability. Due to all these characteristics, they are strong candidates for the next generation of electronic and optoelectronic devices. In this review, we present a comprehensive overview of these OSMCs, discussing molecular packing, the methods to control crystallization and their applications to the area of organic solid-state lasers. Special emphasis is given to OSMC lasers which self-assemble into geometrically defined optical resonators owing to their attractive prospects for tuning/control of light emission properties through geometrical resonator design. The most recent developments together with novel strategies for light emission tuning and effective light extraction are presented.
Collapse
|
4
|
Mamada M, Komatsu R, Adachi C. F8BT Oligomers for Organic Solid-State Lasers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28383-28391. [PMID: 32453542 DOI: 10.1021/acsami.0c05449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The yellow-green emissive poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) polymer is widely used because of its suitability for a variety of applications. However, we have found that F8BT shows huge performance variations that depend on the chemical supplier, with photoluminescence quantum yields (PLQYs) ranging from 7 to 60% in neat films. Polymers generally face problems including purity, polydispersity, and reproducibility, which also affect F8BT polymers. Therefore, to overcome these problems, we investigated oligomers of F8BT, which can easily be purified and can thus be obtained in a high-purity form. In the three oligomers (M1-M3) that we synthesized, the PLQYs were much higher than those of conventional F8BT (>80% in their neat films) although their PL spectra were nearly the same as that of F8BT, and their amplified spontaneous emission (ASE) thresholds were lower than that of the polymer (e.g., 1.9 μJ cm-2 for M3 and 2.7 μJ cm-2 for F8BT) because of a higher net gain and better film morphology. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies of the oligomers were found to be similar to those of F8BT, making them candidate materials for use as hosts in light-emitting devices. The ASE using a near-infrared laser emitter doped in F8BT and oligomer hosts showed a clear difference despite nearly the same properties for steady-state emission.
Collapse
Affiliation(s)
- Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka 819-0395, Japan
- Academia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Ryutaro Komatsu
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka 819-0395, Japan
- ukuoka Industry-Academia Symphonicity (FiaS), 1-4-1, kyudaishinmachi, Nishi-ku, Fukuoka 819-0388, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka 819-0395, Japan
- JST, ERATO, Adachi Molecular Exciton Engineering Project c/o Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka 819-0395, Japan
- Academia-Industry Molecular Systems for Devices Research and Education Center (AIMS), Kyushu University, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka 819-0395, Japan
| |
Collapse
|