1
|
Kulkarni SS, Tong DK, Wu CT, Kao CY, Chattopadhyay S. Defect Engineered Bi 2Te 3 Nanosheets with Enhanced Haloperoxidase Activity for Marine Antibiofouling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401929. [PMID: 38934508 DOI: 10.1002/smll.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Defective bismuth telluride (Bi2Te3) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H2O2. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi2Te3 nanosheets creates controlled defects (d), such as Bi3+species, in d-Bi2Te3-X that induces enhanced hPOD activity. d-Bi2Te3-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi2Te3 nanosheets. The antibacterial activity of d-Bi2Te3-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi2Te3-250 nanozyme has been studied on Pseudomonas aeruginosa biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.
Collapse
Affiliation(s)
- Sagar Sunil Kulkarni
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| | - Dang Khoa Tong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| | - Chien-Ting Wu
- Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| |
Collapse
|
2
|
Chen Y, Zhou L, Guan M, Jin S, Tan P, Fu X, Zhou Z. Multifunctionally disordered TiO 2 nanoneedles prevent periprosthetic infection and enhance osteointegration by killing bacteria and modulating the osteoimmune microenvironment. Theranostics 2024; 14:6016-6035. [PMID: 39346538 PMCID: PMC11426241 DOI: 10.7150/thno.98219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are effective interventions for end-stage osteoarthritis; however, periprosthetic infection is a devastating complication of arthroplasty. To safely prevent periprosthetic infection and enhance osteointegration, the surface modification strategy was utilized to kill bacteria, modulate the osteoimmune microenvironment, and improve new bone formation. Methods: We used the hydrothermal method to fabricate a bionic insect wing with the disordered titanium dioxide nanoneedle (TNN) coating. The mussel-inspired poly-dopamine (PDA) and antibacterial silver nanoparticles (AgNPs) were coated on TNN, named AgNPs-PDA@TNN, to improve the biocompatibility and long-lasting bactericidal capacity. The physicochemical properties of the engineered specimen were evaluated with SEM, AFM, XPS spectrum, and water contact assay. The biocompatibility, bactericidal ability, and the effects on macrophages and osteogenic differentiation were assessed with RT-qPCR, Western blotting, live/dead staining, immunofluorescent staining, etc. Results: The AgNPs-PDA@TNN were biocompatible with macrophages and exhibited immunomodulatory ability to promote M2 macrophage polarization. In addition, AgNPs-PDA@TNN ameliorated the cytotoxicity caused by AgNPs, promoted cell spreading, and increased osteogenesis and matrix deposition of BMSCs. Furthermore, AgNPs-PDA@TNN exhibited bactericidal ability against E. coli and S. aureus by the bionic nanostructure and coated AgNPs. Various imaging analyses indicated the enhanced bactericidal ability and improved new bone formation by AgNPs-PDA@TNN in vivo. H&E, Gram, and Masson staining, verified the improved bone formation, less inflammation, infection, and fibrosis encapsulation. The immunofluorescence staining confirmed the immunomodulatory ability of AgNPs-PDA@TNN in vivo. Conclusion: The bionic insect wing AgNPs-PDA@TNN coating exhibited bactericidal property, immunomodulatory ability, and enhanced osteointegration. Thus, this multidimensional bionic implant surface holds promise as a novel strategy to prevent periprosthetic infection.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liqiang Zhou
- MOE Frontiers Science Center for Precision Oncology Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Ming Guan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shue Jin
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng Tan
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxue Fu
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Department of Orthopedics and Research Institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Jha A, Gryska S, Barrios C, Frechette J. Adhesion and Contact Aging of Acrylic Pressure-Sensitive Adhesives to Swollen Elastomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4267-4276. [PMID: 38359377 PMCID: PMC10906000 DOI: 10.1021/acs.langmuir.3c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Fluid-infused (or swollen) elastomers are known for their antiadhesive properties. The presence of excess fluid at their surface is the main contributor to limiting contact formation and minimizing adhesion. Despite their potential, the mechanisms for adhesion and contact aging to fluid-infused elastomers are poorly understood beyond contact with a few materials (ice, biofilms, glass). This study reports on adhesion to a model fluid-infused elastomer, poly(dimethylsiloxane) (PDMS), swollen with silicone oil. The effects of oil saturation, contact time, and the opposing surface are investigated. Specifically, adhesion to two different adherents with comparable surface energies but drastically different mechanical properties is investigated: a glass surface and a soft viscoelastic acrylic pressure-sensitive adhesive film (PSA, modulus ∼25 kPa). Adhesion between the PSA and swollen PDMS [with 23% (w/w) silicone oil] retains up to 60% of its value compared to contact with unswollen (dry) PDMS. In contrast, adhesion to glass nearly vanishes in contact with the same swollen elastomer. Adhesion to the PSA also displays stronger contact aging than adhesion to glass. Contact aging with the PSA is comparable for dry and unsaturated PDMS. Moreover, load relaxation when the PSA is in contact with the PDMS does not correlate with contact aging for contact with the dry or unsaturated elastomer, suggesting that contact aging is likely caused by chain interpenetration and polymer reorganization within the contact region. Closer to full saturation of the PDMS with oil, adhesion to the PSA decreases significantly and shows a delay in the onset of contact aging that is weakly correlated to the poroelastic relaxation of the elastomer. Additional confocal imaging suggests that the presence of a layer of fluid trapped at the interface between the two solids could explain the delayed (and limited) contact aging to the oil-saturated PDMS.
Collapse
Affiliation(s)
- Anushka Jha
- Chemical
and Biomolecular Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Stefan Gryska
- 3M
Center, 3M Company, Building 201-4N-01, St. Paul, Minnesota 55144-1000, United States
| | - Carlos Barrios
- Carlos
Barrios Consulting LLC, Frisco, Texas 75034, United States
| | - Joelle Frechette
- Chemical
and Biomolecular Engineering, University
of California, Berkeley, California 94720, United States
- Energy
Technology Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Höpfner J, Brehm M, Levkin PA. Palladium-Catalyzed Combinatorial Synthesis of Biphenyls on Droplet Microarrays at Nanoliter Scale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304325. [PMID: 37726239 DOI: 10.1002/smll.202304325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Indexed: 09/21/2023]
Abstract
The rising costs of pharmaceutical research are currently limiting the productivity of drug discovery and development, but can potentially be diminished via miniaturization of the synthesis and screening of new compounds. As droplet microarrays already present themselves as a versatile tool for highly miniaturized biological screening of various targets, their use for chemical synthesis is still limited. In this study, the influential palladium-catalyzed Suzuki-Miyaura reaction is successfully implemented at the nanoliter scale on droplet microarrays for the synthesis of an 800-compound library of biphenyls. Each reaction is carried out in individual 150 nL droplets. Remarkably, the synthesis of these 800 compounds requires a minimal amount of reagents, totaling 80 µmol, and a solvent volume of 400 µL. Furthermore, the cleavage kinetics and purity of the obtained biphenylic compounds are investigated. Via the solid-phase synthesis approach, the compounds could be purified from excess reactants and catalyst prior to the analysis and a UV-cleavable linker allows for fast and additive-free cleavage of each compound into the individual 100 nL droplet. This novel approach expands the toolbox of the droplet microarray for miniaturized high-throughput chemical synthesis and paves the way for future synthesis and screening of chemical compounds in a single platform.
Collapse
Affiliation(s)
- Julius Höpfner
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Marius Brehm
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Song Y, Wang L, Xu T, Zhang G, Zhang X. Emerging open-channel droplet arrays for biosensing. Natl Sci Rev 2023; 10:nwad106. [PMID: 38027246 PMCID: PMC10662666 DOI: 10.1093/nsr/nwad106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/01/2023] Open
Abstract
Open-channel droplet arrays have attracted much attention in the fields of biochemical analysis, biofluid monitoring, biomarker recognition and cell interactions, as they have advantages with regard to miniaturization, parallelization, high-throughput, simplicity and accessibility. Such droplet arrays not only improve the sensitivity and accuracy of a biosensor, but also do not require sophisticated equipment or tedious processes, showing great potential in next-generation miniaturized sensing platforms. This review summarizes typical examples of open-channel microdroplet arrays and focuses on diversified biosensing integrated with multiple signal-output approaches (fluorescence, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical, etc.). The limitations and development prospects of open-channel droplet arrays in biosensing are also discussed with regard to the increasing demand for biosensors.
Collapse
Affiliation(s)
- Yongchao Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guangyao Zhang
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
7
|
Li M, Hao J, Bai H, Wang X, Li Z, Cao M. On-Chip Liquid Manipulation via a Flexible Dual-Layered Channel Possessing Hydrophilic/Hydrophobic Dichotomy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19773-19782. [PMID: 36999662 DOI: 10.1021/acsami.3c03275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The hydrophilic/hydrophobic cooperative interface provides a smart platform to control liquid distribution and delivery. Through the fusion of flexibility and complex structure, we present a manipulable, open, and dual-layered liquid channel (MODLC) for on-demand mechanical control of fluid delivery. Driven by anisotropic Laplace pressure, the mechano-controllable asymmetric channel of MODLC can propel the directional slipping of liquid located between the paired tracks. Upon a single press, the longest transport distance can reach 10 cm with an average speed of ∼3 cm/s. The liquid on the MODLC can be immediately manipulated by pressing or dragging processes, and versatile liquid-manipulating processes on hierarchical MODLC chips have been achieved, including remote droplet magneto-control, continuous liquid distributor, and gas-producing chip. The flexible hydrophilic/hydrophobic interface and its assembly can extend the function and applications of the wettability-patterned interface, which should update our understanding of complex systems for sophisticated liquid transport.
Collapse
Affiliation(s)
- Muqian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jingpeng Hao
- Department of Anorectal Surgery, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Haoyu Bai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 199.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Sinha Mahapatra P, Ganguly R, Ghosh A, Chatterjee S, Lowrey S, Sommers AD, Megaridis CM. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications. Chem Rev 2022; 122:16752-16801. [PMID: 36195098 DOI: 10.1021/acs.chemrev.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Effective manipulation of liquids on open surfaces without external energy input is indispensable for the advancement of point-of-care diagnostic devices. Open-surface microfluidics has the potential to benefit health care, especially in the developing world. This review highlights the prospects for harnessing capillary forces on surface-microfluidic platforms, chiefly by inducing smooth gradients or sharp steps of wettability on substrates, to elicit passive liquid transport and higher-order fluidic manipulations without off-the-chip energy sources. A broad spectrum of the recent progress in the emerging field of passive surface microfluidics is highlighted, and its promise for developing facile, low-cost, easy-to-operate microfluidic devices is discussed in light of recent applications, not only in the domain of biomedical microfluidics but also in the general areas of energy and water conservation.
Collapse
Affiliation(s)
- Pallab Sinha Mahapatra
- Micro Nano Bio-Fluidics group, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai600036, India
| | - Ranjan Ganguly
- Department of Power Engineering, Jadavpur University, Kolkata700098, India
| | - Aritra Ghosh
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Souvick Chatterjee
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| | - Sam Lowrey
- Department of Physics, University of Otago, Dunedin9016, New Zealand
| | - Andrew D Sommers
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio45056, United States
| | - Constantine M Megaridis
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois60607, United States
| |
Collapse
|
10
|
Yang Y, Zhu Q, Xu LP, Zhang X. Bioinspired liquid-infused surface for biomedical and biosensing applications. Front Bioeng Biotechnol 2022; 10:1032640. [PMID: 36246360 PMCID: PMC9557121 DOI: 10.3389/fbioe.2022.1032640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nature always inspires us to develop advanced materials for diverse applications. The liquid-infused surface (LIS) inspired by Nepenthes pitcher plants has aroused broad interest in fabricating anti-biofouling materials over the past decade. The infused liquid layer on the solid substrate repels immiscible fluids and displays ultralow adhesion to various biomolecules. Due to these fascinating features, bioinspired LIS has been applied in biomedical-related fields. Here, we review the recent progress of LIS in bioengineering, medical devices, and biosensing, and highlight how the infused liquid layer affects the performance of medical materials. The prospects for the future trend of LIS are also presented.
Collapse
Affiliation(s)
- Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| |
Collapse
|
11
|
Ma R, Hu X, Zhang X, Wang W, Sun J, Su Z, Zhu C. Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle. Front Cell Infect Microbiol 2022; 12:1003033. [PMID: 36211965 PMCID: PMC9534288 DOI: 10.3389/fcimb.2022.1003033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Su
- *Correspondence: Chen Zhu, ; Zheng Su,
| | - Chen Zhu
- *Correspondence: Chen Zhu, ; Zheng Su,
| |
Collapse
|
12
|
Leonard H, Jiang X, Arshavsky-Graham S, Holtzman L, Haimov Y, Weizman D, Halachmi S, Segal E. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. NANOSCALE HORIZONS 2022; 7:729-742. [PMID: 35616534 DOI: 10.1039/d2nh00130f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With new advances in infectious disease, antifouling surfaces, and environmental microbiology research comes the need to understand and control the accumulation and attachment of bacterial cells on a surface. Thus, we employ intrinsic phase-shift reflectometric interference spectroscopic measurements of silicon diffraction gratings to non-destructively observe the interactions between bacterial cells and abiotic, microstructured surfaces in a label-free and real-time manner. We conclude that the combination of specific material characteristics (i.e., substrate surface charge and topology) and characteristics of the bacterial cells (i.e., motility, cell charge, biofilm formation, and physiology) drive bacteria to adhere to a particular surface, often leading to a biofilm formation. Such knowledge can be exploited to predict antibiotic efficacy and biofilm formation, and enhance surface-based biosensor development, as well as the design of anti-biofouling strategies.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yuri Haimov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Daniel Weizman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sarel Halachmi
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
13
|
Sonawane JM, Rai AK, Sharma M, Tripathi M, Prasad R. Microbial biofilms: Recent advances and progress in environmental bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153843. [PMID: 35176385 DOI: 10.1016/j.scitotenv.2022.153843] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 05/21/2023]
Abstract
Microbial biofilms are formed by adherence of the bacteria through their secreted polymer matrices. The major constituents of the polymer matrices are extracellular DNAs, proteins, polysaccharides. Biofilms have exhibited a promising role in the area of bioremediation. These activities can be further improved by tuning the parameters like quorum sensing, characteristics of the adhesion surface, and other environmental factors. Organic pollutants have created a global concern because of their long-term toxicity on human, marine, and animal life. These contaminants are not easily degradable and continue to prevail in the environment for an extended period. Biofilms are being used for the remediation of different pollutants, among which organic pollutants have been of significance. The bioremediation of organic contaminants using biofilms is an eco-friendly, cheap, and green process. However, the development of this technology demands knowledge on the mechanism of action of the microbes to form the biofilm, types of specific bacteria or fungi responsible for the degradation of a particular organic compound, and the mechanistic role of the biofilm in the degradation of the pollutants. This review puts forth a comprehensive summary of the role of microbial biofilms in the bioremediation of different environment-threatening organic pollutants.
Collapse
Affiliation(s)
- Jayesh M Sonawane
- Department of Chemistry, Alexandre-Vachon Pavilion, Laval University, Quebec G1V 0A6, Canada
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar, India.
| |
Collapse
|
14
|
Chakraborty S, Luchena C, Elton JJ, Schilling MP, Reischl M, Roux M, Levkin PA, Popova AA. "Cells-to-cDNA on Chip": Phenotypic Assessment and Gene Expression Analysis from Live Cells in Nanoliter Volumes Using Droplet Microarrays. Adv Healthc Mater 2022; 11:e2102493. [PMID: 35285171 PMCID: PMC11469226 DOI: 10.1002/adhm.202102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
In vitro cell-based experiments are particularly important in fundamental biological research. Microscopy-based readouts to identify cellular changes in response to various stimuli are a popular choice, but gene expression analysis is essential to delineate the underlying molecular dynamics in cells. However, cell-based experiments often suffer from interexperimental variation, especially while using different readout methods. Therefore, establishment of platforms that allow for cell screening, along with parallel investigations of morphological features, as well as gene expression levels, is crucial. The droplet microarray (DMA) platform enables cell screening in hundreds of nanoliter droplets. In this study, a "Cells-to-cDNA on Chip" method is developed enabling on-chip mRNA isolation from live cells and conversion to cDNA in individual droplets of 200 nL. This novel method works efficiently to obtain cDNA from different cell numbers, down to single cell per droplet. This is the first established miniaturized on-chip strategy that enables the entire course of cell screening, phenotypic microscopy-based assessments along with mRNA isolation and its conversion to cDNA for gene expression analysis by real-time PCR on an open DMA platform. The principle demonstrated in this study sets a beginning for myriad of possible applications to obtain detailed information about the molecular dynamics in cultured cells.
Collapse
Affiliation(s)
- Shraddha Chakraborty
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Charlotte Luchena
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jonathan J. Elton
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Marcel P. Schilling
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Markus Reischl
- Institute for Automation and Applied InformaticsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Margaux Roux
- Cellenion SASUBioserra 2, 60 avenue RockefellerLyon69008France
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of TechnologyFritz‐Haber Weg 6Karlsruhe76131Germany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems‐Functional Molecular SystemsKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
15
|
Mok JH, Niu Y, Yousef A, Zhao Y, Sastry SK. A microfluidic approach for studying microcolonization of Escherichia coli O157:H7 on leaf trichome-mimicking surfaces under fluid shear stress. Biotechnol Bioeng 2022; 119:1556-1566. [PMID: 35141878 DOI: 10.1002/bit.28057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 have previously been associated with disease outbreaks associated with leafy green vegetables. However, the physical mechanisms that determine the spatial organization of bacteria onto leafy greens are still not clear. Microfluidics with embedded trichome-mimicking microposts were employed to investigate the role of shear flow and configuration of trichomes on E. coli O157:H7 microcolonization. We characterized the three-dimensional microcolonization of green fluorescent protein (GFP)-tagged E. coli O157:H7 using multiphoton fluorescence microscopy and compared their differences under static (no flow; incubated for 36 h at 37°C) and fluid shear conditions (750 nl/min for 36 h at 37°C). For micropatterned trichome arrays, we demonstrated that natural wax-mixed polydimethylsiloxane retains similar topographies and contact angles to the surface of trichome-bearing leafy greens. Our results showed that E. coli O157:H7 under fluid shear stress aligned their colonization parallel to the direction of flow. In a static condition, their colonization had no preferential alignment, with statistically similar angular distributions in all directions. In addition, depending on dimensions of the trichome arrays and flow conditions, different bacterial microcolonization patterns grew radially from initial attachment; they formed into filamentous structures and developed into bridges by surface hydrophobicity and flow-induced shear with a nutrient-rich medium. Collectively, these results demonstrate how the consequences of bacterial colonization in response to shear flow can affect pathogenic bacterial contamination of leafy greens and biofilm architectures.
Collapse
Affiliation(s)
- Jin Hong Mok
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int J Mol Sci 2021; 22:ijms22169100. [PMID: 34445806 PMCID: PMC8396552 DOI: 10.3390/ijms22169100] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
After the first ancient studies on microbial slime (the name by which the biofilm matrix was initially indicated), multitudes of studies on the morphology, composition and physiology of biofilms have arisen. The emergence of the role that biofilms play in the pathogenesis of recalcitrant and persistent clinical infections, such as periprosthetic orthopedic infections, has reinforced scientific interest. Extracellular DNA (eDNA) is a recently uncovered component that is proving to be almost omnipresent in the extracellular polymeric substance (EPS) of biofilm. This macromolecule is eliciting unprecedented consideration for the critical impact on the pathogenesis of chronic clinical infections. After a systematic review of the literature, an updated description of eDNA in biofilms is presented, with a special focus on the latest findings regarding its fundamental structural role and the contribution it makes to the complex architecture of bacterial biofilms through interactions with a variety of other molecular components of the biofilm matrix.
Collapse
|
17
|
Nahar S, Jeong HL, Kim Y, Ha AJW, Roy PK, Park SH, Ashrafudoulla M, Mizan MFR, Ha SD. Inhibitory effects of Flavourzyme on biofilm formation, quorum sensing, and virulence genes of foodborne pathogens Salmonella Typhimurium and Escherichia coli. Food Res Int 2021; 147:110461. [PMID: 34399461 DOI: 10.1016/j.foodres.2021.110461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Salmonella enterica and Shiga toxin-producing (or verotoxin-producing) Escherichia coli are major foodborne pathogens, posing substantial food safety risks. Due to the negative effects of chemical treatment against foodborne pathogens, the application of enzyme-based techniques is currently receiving great attention. Here, we evaluated the inhibitory properties of Flavourzyme, a commercial peptidase, against these two foodborne pathogens. We noticed 4.0 and 5.5 log inhibition of biofilm formation by S. Typhimurium and E. coli, respectively, while treated with sub-minimum inhibitory concentrations of Flavourzyme for 24 h. For both bacteria, the enzyme exhibited quorum-quenching activity, preventing autoinducer-2 production completely by E. coli. In addition, Flavourzyme significantly suppressed the relative expression levels of biofilm-forming, quorum sensing, and virulence regulatory genes as measured by qRT-PCR. Based on our results, we suggest the use of Flavourzyme as a preventive agent against foodborne pathogens that possibly acts by inhibiting bacterial self-defense mechanisms following disruption of cellular proteins. This finding may shed light on how enzymes can be applied as a novel weapon to control foodborne illnesses to ensure food safety and public health.
Collapse
Affiliation(s)
- Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Ha Lim Jeong
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Younsoo Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR, USA
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
18
|
Xia W, Li N, Shan H, Lin Y, Yin F, Yu X, Zhou Z. Gallium Porphyrin and Gallium Nitrate Reduce the High Vancomycin Tolerance of MRSA Biofilms by Promoting Extracellular DNA-Dependent Biofilm Dispersion. ACS Infect Dis 2021; 7:2565-2582. [PMID: 34346692 DOI: 10.1021/acsinfecdis.1c00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biofilms, structured communities of bacterial cells embedded in a self-produced extracellular matrix (ECM) which consists of proteins, polysaccharide intercellular adhesins (PIAs), and extracellular DNA (eDNA), play a key role in clinical infections and are associated with an increased morbidity and mortality by protecting the embedded bacteria against drug and immune response. The high levels of antibiotic tolerance render classical antibiotic therapies impractical for biofilm-related infections. Thus, novel drugs and strategies are required to reduce biofilm tolerance and eliminate biofilm-protected bacteria. Here, we showed that gallium, an iron mimetic metal, can lead to nutritional iron starvation and act as dispersal agent triggering the reconstruction and dispersion of mature methicillin-resistant Staphylococcus aureus (MRSA) biofilms in an eDNA-dependent manner. The extracellular matrix, along with the integral bacteria themselves, establishes the integrated three-dimensional structure of the mature biofilm. The structures and compositions of gallium-treated mature biofilms differed from those of natural or antibiotic-survived mature biofilms but were similar to those of immature biofilms. Similar to immature biofilms, gallium-treated biofilms had lower levels of antibiotic tolerance, and our in vitro tests showed that treatment with gallium agents reduced the antibiotic tolerance of mature MRSA biofilms. Thus, the sequential administration of gallium agents (gallium porphyrin and gallium nitrate) and relatively low concentrations of vancomycin (16 mg/L) effectively eliminated mature MRSA biofilms and eradicated biofilm-enclosed bacteria within 1 week. Our results suggested that gallium agents may represent a potential treatment for refractory biofilm-related infections, such as prosthetic joint infections (PJI) and osteomyelitis, and provide a novel basis for future biofilm treatments based on the disruption of normal biofilm-development processes.
Collapse
Affiliation(s)
- Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Niya Li
- Department of Laboratory, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Svarcova V, Zdenkova K, Sulakova M, Demnerova K, Pazlarova J. Contribution to determination of extracellular DNA origin in the biofilm matrix. J Basic Microbiol 2021; 61:652-661. [PMID: 33997991 DOI: 10.1002/jobm.202100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
This study is focused on the analysis of extracellular DNA (eDNA) from a biofilm matrix formed by Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica. The presence of eDNA in the biofilm of all the studied strains was confirmed by confocal laser scanning microscopy using fluorescent dyes with high affinity to nucleic acid. The protocol for eDNA isolation from the biofilm matrix was established, and subsequent characterization of the eDNA was performed. The purified eDNA obtained from the biofilm matrix of all three microorganisms was compared to the genomic DNA (gDNA) isolated from relevant planktonic grown cells. The process of eDNA isolation consisted of biofilm cultivation, its collection, sonication, membrane filtration, dialysis, lyophilisation, and extraction of DNA separated from the biofilm matrix with cetyltrimethylammonium bromide. An amplified fragment length polymorphism (AFLP) was used for comparing eDNA and gDNA. AFLP profiles showed a significant similarity between eDNA and gDNA at the strain level. The highest similarity, with a profile concordance rate of 94.7% per strain, was observed for S. aureus, L. monocytogenes, and S. enterica exhibited lower profiles similarity (78% and 60%, respectively). The obtained results support the hypothesis that the eDNA of studied bacterial species has its origin in the gDNA.
Collapse
Affiliation(s)
- Viviana Svarcova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Kamila Zdenkova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Martina Sulakova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Katerina Demnerova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jarmila Pazlarova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
20
|
Behboodi-Sadabad F, Li S, Lei W, Liu Y, Sommer T, Friederich P, Sobek C, Messersmith PB, Levkin PA. High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines. Mater Today Bio 2021; 10:100108. [PMID: 33912825 PMCID: PMC8063910 DOI: 10.1016/j.mtbio.2021.100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 10/31/2022] Open
Abstract
Biomimetic surface coatings based on plant polyphenols and catecholamines have been used broadly in a variety of applications. However, the lack of a rational cost-effective platform for screening these coatings and their properties limits the true potential of these functional materials to be unleashed. Here, we investigated the oxidation behavior and coating formation ability of a library consisting of 45 phenolic compounds and catecholamines. UV-vis spectroscopy demonstrated significant acceleration of oxidation and polymerization under UV irradiation. We discovered that several binary mixtures resulted in non-additive behavior (synergistic or antagonistic effect) yielding much thicker or thinner coatings than individual compounds measured by ellipsometry. To investigate the properties of coatings derived from new combinations, we used a miniaturized high-throughput strategy to screen 2,532 spots coated with single, binary, and ternary combinations of coating precursors in one run. We evaluated the use of machine learning models to learn the relation between the chemical structure of the precursors and the thickness of the nanocoatings. Formation and stability of nanocoatings were investigated in a high-throughput manner via discontinuous dewetting. 30 stable combinations (hits) were used to tune the surface wettability and to form water droplet microarray and spot size gradients of water droplets on the coated surface. No toxicity was observed against eukaryotic HeLa cells and Pseudomonas aeruginosa (strain PA30) bacteria after 24 h incubation at 37 °C. The strategy introduced here for high-throughput screening of nanocoatings derived from combinations of coating precursors enables the discovery of new functional materials for various applications in science and technology in a cost-effective miniaturized manner.
Collapse
Affiliation(s)
- F Behboodi-Sadabad
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - S Li
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - W Lei
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Y Liu
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - T Sommer
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe, 76131, Germany
| | - P Friederich
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe, 76131, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - C Sobek
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, CA, 94720-1760, USA
| | - P B Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California Berkeley, CA, 94720-1760, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - P A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
21
|
Cui H, Wang X, Wesslowski J, Tronser T, Rosenbauer J, Schug A, Davidson G, Popova AA, Levkin PA. Assembly of Multi-Spheroid Cellular Architectures by Programmable Droplet Merging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006434. [PMID: 33325613 PMCID: PMC11469186 DOI: 10.1002/adma.202006434] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Indexed: 05/26/2023]
Abstract
Artificial multicellular systems are gaining importance in the field of tissue engineering and regenerative medicine. Reconstruction of complex tissue architectures in vitro is nevertheless challenging, and methods permitting controllable and high-throughput fabrication of complex multicellular architectures are needed. Here, a facile and high-throughput method is developed based on a tunable droplet-fusion technique, allowing programmed assembly of multiple cell spheroids into complex multicellular architectures. The droplet-fusion technique allows for construction of various multicellular architectures (double-spheroids, multi-spheroids, hetero-spheroids) in a miniaturized high-density array format. As an example of application, the propagation of Wnt signaling is investigated within hetero-spheroids formed from two fused Wnt-releasing and Wnt-reporter cell spheroids. The developed method provides an approach for miniaturized, high-throughput construction of complex 3D multicellular architectures and can be applied for studying various biological processes including cell signaling, cancer invasion, embryogenesis, and neural development.
Collapse
Affiliation(s)
- Haijun Cui
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences (CAS)Zhongguancun East Road 29Beijing100190P. R. China
| | - Xianxian Wang
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Janine Wesslowski
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Tina Tronser
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jakob Rosenbauer
- John von Neumann Institute for ComputingJülich Supercomputer CentreForschungszentrum JülichWilhelm‐Johnen‐StraßeJülich52428Germany
| | - Alexander Schug
- John von Neumann Institute for ComputingJülich Supercomputer CentreForschungszentrum JülichWilhelm‐Johnen‐StraßeJülich52428Germany
- Faculty of BiologyUniversity of Duisburg‐EssenUniversitätsstraße 5Essen45141Germany
| | - Gary Davidson
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber Weg 6Karlsruhe76131Germany
| |
Collapse
|
22
|
Lei W, Krolla P, Schwartz T, Levkin PA. Controlling Geometry and Flow Through Bacterial Bridges on Patterned Lubricant-Infused Surfaces (pLIS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004575. [PMID: 33216442 DOI: 10.1002/smll.202004575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Spatial control of bacteria and biofilms on surfaces is necessary to understand the biofilm formation and the social interactions between bacterial communities, which could provide useful hints to study the biofilm-involved diseases. Here patterned lubricant-infused surfaces (pLIS) are utilized to fabricate connective structures named "bacterial bridges" between bacterial colonies of Pseudomonas aeruginosa by a simple dewetting method. It is demonstrated that the bacteria attached to hydrophilic areas and bacteria precipitated on lubricant infused borders both contribute to the formation of bacterial bridges. The geometry and distribution of bridges can be controlled using predesigned superhydrophobic-hydrophilic patterns. It is demonstrated that bacterial bridges connecting bacteria colonies act as bio-microfluidic channels and can transport liquids, nutrients, and antibacterial substances between neighboring bacteria clusters. Thus, bacterial bridges can be used to study formation, spreading, and development of bacterial colonies, and communication within and between isolated biofilms.
Collapse
Affiliation(s)
- Wenxi Lei
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Peter Krolla
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Thomas Schwartz
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
23
|
Lei W, Demir K, Overhage J, Grunze M, Schwartz T, Levkin PA. Droplet-Microarray: Miniaturized Platform for High-Throughput Screening of Antimicrobial Compounds. ACTA ACUST UNITED AC 2020; 4:e2000073. [PMID: 32875737 DOI: 10.1002/adbi.202000073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/20/2020] [Indexed: 01/12/2023]
Abstract
Currently, there are no time-saving and cost-effective high-throughput screening methods for the evaluation of bacterial drug-resistance. In this study, a droplet microarray (DMA) system is established as a miniaturized platform for high-throughput screening of antibacterial compounds using the emerging, opportunistic human pathogen Pseudomonas aeruginosa (P. aeruginosa) as a target. Based on the differences in wettability of DMA slides, a rapid method for generating microarrays of nanoliter-sized droplets containing bacteria is developed. The bacterial growth in droplets is evaluated using fluorescence. The new method enables immediate screening with libraries of antibiotics. A novel simple colorimetric readout method compatible with the nanoliter size of the droplets is established. Furthermore, the drug-resistance of P. aeruginosa 49, a multi-resistant strain from an environmental isolate, is investigated. This study demonstrates the potential of the DMA platform for the rapid formation of microarrays of bacteria for high-throughput drug screening.
Collapse
Affiliation(s)
- Wenxi Lei
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Konstantin Demir
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Michael Grunze
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany
| | - Thomas Schwartz
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.,Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
24
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
25
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
26
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
27
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|
28
|
Wei X, Sun H, Bai Y, Zhang Y, Ma Z, Li J, Zhang X. An on-demand nanoplatform for enhanced elimination of drug-resistant bacteria. Biomater Sci 2020; 8:6912-6919. [DOI: 10.1039/d0bm00786b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We establish an “on-demand” nanoplatform based on acid-degradable scaffolds by conjugating glycomimetic-based galactose ligands to target a key lectin on P. aeruginosa and guanidine moieties.
Collapse
Affiliation(s)
- Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Haonan Sun
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yayun Bai
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|