1
|
Zhang H, Zhou W, Hu L, Guo Y, Lu Y, Feng J. La doped-Fe 2(MoO 4) 3 with the synergistic effect between Fe 2+/Fe 3+ cycling and oxygen vacancies enhances the electrocatalytic synthesizing NH 3. J Colloid Interface Sci 2025; 677:264-272. [PMID: 39094487 DOI: 10.1016/j.jcis.2024.07.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is a crucial process in addressing energy shortages and environmental concerns by synthesizing the NH3. However, the difficulty of N2 activation and fewer NRR active sites limit the application of NRR. Therefore, the NRR performance can be improved by rapid electron transport paths to participate in multi-electron reactions and N2 activation. Doping with transition metal element is a viable strategy to provide electrons and electronic channels in the NRR. This study focuses on the synthesis of Fe2(MoO4)3 (FeMo) and x%La-doped FeMo (x = 3, 5, 7, and 10) using the hydrothermal method. La-doping creates electron transport channels Fe2+-O2--Fe3+ and oxygen vacancies, achieving an equal molar ratio of Fe2+/Fe3+. This strategy enables the super-exchange in Fe2+-O2--Fe3+, and then enhances electron transport speed for a rapid hydrogenation reaction. Therefore, the synergistic effect of Fe2+/Fe3+ cycling and oxygen vacancies improves the NRR performance. Notably, 5%La-FeMo demonstrates the superior NRR performance (NH3 yield rate: 29.6 μg h-1 mgcat-1, Faradaic efficiency: 5.8%) at -0.8 V (vs. RHE). This work analyzes the influence of the catalyst electronic environment on the NRR performance based on the effect on different valence states of ions on electron transport.
Collapse
Affiliation(s)
- Hexin Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Weichi Zhou
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Liangqing Hu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| | - Yanming Guo
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Yinpeng Lu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
2
|
Feng Y, Jiao L, Zhuang X, Wang Y, Yao J. The Development, Essence and Perspective of Nitrogen Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410909. [PMID: 39533455 DOI: 10.1002/adma.202410909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Ammonia plays a pivotal role in agriculture and meanwhile holds promising potential as an energy vector for the hydrogen economy, where the nitrogen reduction to ammonia is a critical pathway for achieving sustainable development. Over the past hundred years, ammonia synthesis has undergone several breakthrough developments from Haber-Bosch process to photo/electro-catalysis and Li-mediated strategy, but still faces the challenges of low yield rate, selectivity and efficiency. Therefore, there is a pressing demand to develop efficient and green ammonia synthesis from nitrogen. This review summarizes the development of the nitrogen reduction to ammonia, highlighting six milestones during the whole journey. From the development direction, this work finds and extracts the essence of ammonia synthesis, that is the reaction pathways are affected by the energy barrier of reaction intermediates, which can be altered by proton sources, auxiliaries and catalysts. Then this work discusses the detailed overview of the significant development of proton source, auxiliaries and catalysts. Finally, based on the essence, the possible opportunities of ammonia synthesis from nitrogen reduction are presented, including the design of new ammonia synthesis pathways and efficient catalysts. The deep insight of nitrogen reduction to ammonia will provide a design guidance for efficient ammonia synthesis.
Collapse
Affiliation(s)
- Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lei Jiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Zhuang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Jiannian Yao
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
3
|
Li H, Wang Y, Chen S, Peng F, Gao F. Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrate-Favored Active Cu-B Sites on SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308182. [PMID: 38308386 DOI: 10.1002/smll.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| | - Shuheng Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| |
Collapse
|
4
|
Mu J, Gao X, Yu T, Zhao L, Luo W, Yang H, Liu Z, Sun Z, Gu Q, Li F. Ambient Electrochemical Ammonia Synthesis: From Theoretical Guidance to Catalyst Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308979. [PMID: 38345238 PMCID: PMC11022736 DOI: 10.1002/advs.202308979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Indexed: 04/18/2024]
Abstract
Ammonia, a vital component in the synthesis of fertilizers, plastics, and explosives, is traditionally produced via the energy-intensive and environmentally detrimental Haber-Bosch process. Given its considerable energy consumption and significant greenhouse gas emissions, there is a growing shift toward electrocatalytic ammonia synthesis as an eco-friendly alternative. However, developing efficient electrocatalysts capable of achieving high selectivity, Faraday efficiency, and yield under ambient conditions remains a significant challenge. This review delves into the decades-long research into electrocatalytic ammonia synthesis, highlighting the evolution of fundamental principles, theoretical descriptors, and reaction mechanisms. An in-depth analysis of the nitrogen reduction reaction (NRR) and nitrate reduction reaction (NitRR) is provided, with a focus on their electrocatalysts. Additionally, the theories behind electrocatalyst design for ammonia synthesis are examined, including the Gibbs free energy approach, Sabatier principle, d-band center theory, and orbital spin states. The review culminates in a comprehensive overview of the current challenges and prospective future directions in electrocatalyst development for NRR and NitRR, paving the way for more sustainable methods of ammonia production.
Collapse
Affiliation(s)
- Jianjia Mu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Xuan‐Wen Gao
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Tong Yu
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Lu‐Kang Zhao
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Wen‐Bin Luo
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Huicong Yang
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Zhao‐Meng Liu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Zhenhua Sun
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Qin‐Fen Gu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
- Australian Synchrotron (ANSTO)800 Blackburn RdClaytonVIC3168Australia
| | - Feng Li
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| |
Collapse
|
5
|
Yu Y, Wei X, Chen W, Qian G, Chen C, Wang S, Min D. Design of Single-Atom Catalysts for E lectrocatalytic Nitrogen Fixation. CHEMSUSCHEM 2024; 17:e202301105. [PMID: 37985420 DOI: 10.1002/cssc.202301105] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The Electrochemical nitrogen reduction reaction (ENRR) can be used to solve environmental problems as well as energy shortage. However, ENRR still faces the problems of low NH3 yield and low selectivity. The NH3 yield and selectivity in ENRR are affected by multiple factors such as electrolytic cells, electrolytes, and catalysts, etc. Among these catalysts are at the core of ENRR research. Single-atom catalysts (SACs) with intrinsic activity have become an emerging technology for numerous energy regeneration, including ENRR. In particular, regulating the microenvironment of SACs (hydrogen evolution reaction inhibition, carrier engineering, metal-carrier interaction, etc.) can break through the limitation of intrinsic activity of SACs. Therefore, this Review first introduces the basic principles of NRR and outlines the key factors affecting ENRR. Then a comprehensive summary is given of the progress of SACs (precious metals, non-precious metals, non-metallic) and diatomic catalysts (DACs) in ENRR. The impact of SACs microenvironmental regulation on ENRR is highlighted. Finally, further research directions for SACs in ENRR are discussed.
Collapse
Affiliation(s)
- Yuanyuan Yu
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Xiaoxiao Wei
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Wangqian Chen
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Guangfu Qian
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxsi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| |
Collapse
|
6
|
Luo S, Liu Y, Song Y, Yang Y, Chen F, Chen S, Wei Z. Plasma-induced nitrogen vacancy-mediated ammonia synthesis over a VN catalyst. Chem Commun (Camb) 2024; 60:3295-3298. [PMID: 38426264 DOI: 10.1039/d4cc00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Plasma catalysis has recently been recognized as a promising route for artificial N2 reduction under mild conditions. Here we report a highly active VN catalyst for plasma-catalytic NH3 synthesis via the typical Mars-van Krevelen (MvK) mechanism. Our results indicate that NH3 synthesis occurs through the continuous regeneration and elimination of nitrogen vacancies on the VN surface. With this strategy, the VN catalyst achieves a superhigh NH3 yield of 143.2 mg h-1 gcat.-1 and a competitive energy efficiency of 1.43 gNH3 kW h-1.
Collapse
Affiliation(s)
- Shijian Luo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Yongduo Liu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Yang Song
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Yuran Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Fadong Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Siguo Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| | - Zidong Wei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
- State Key Laboratory of Advanced Chemical Power Sources (SKL-ACPS), Chongqing, China
| |
Collapse
|
7
|
Ingavale S, Marbaniang P, Palabathuni M, Mishra N. In situ growth of copper oxide on MXene by combustion method for electrochemical ammonia production from nitrate. NANOSCALE ADVANCES 2024; 6:481-488. [PMID: 38235088 PMCID: PMC10791130 DOI: 10.1039/d3na00609c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
The elimination of the nitrogen pollutant nitrate ions through the electrochemical synthesis of ammonia is an important and environment friendly strategy. Electrochemical nitrate reduction requires highly efficient, selective, and stable catalysts to convert nitrate to ammonia. In this work, a composite of copper oxide and MXene was synthesized using a combustion technique. As reported, nitrate ions are effectively adsorbed by CuxO (CuO & Cu2O) nanoparticles. Herein, MXene is an excellent assembly for anchoring CuxO on its layered surface because it has a strong support structure. Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses show the presence of oxidation states of metal ions and the formation of CuxO nanofoam anchors on the surface of MXene (Ti3C2Tx). The optimized CuxO/Ti3C2Tx composite exhibits an improved nitrate reduction reaction. The electrochemical studies of CuxO/Ti3C2Tx show an interesting nitrate reduction reaction (NO3RR) with a current density of 162 mA cm-2. Further, CuxO/Ti3C2Tx shows an electrocatalytic activity with an ammonia production of 41 982 μg h-1 mcat-1 and its faradaic efficiency is 48% at -0.7 V vs. RHE. Thus, such performance by CuxO/Ti3C2Tx indicates a well-suitable candidate for nitrate ion conversion to ammonia.
Collapse
Affiliation(s)
- Sagar Ingavale
- Department of Chemistry, SRM University-AP, Andhra Pradesh Neerukonda, Guntur (Dt) Andhra Pradesh 522240 India
| | - Phiralang Marbaniang
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Manoj Palabathuni
- Department of Chemistry, SRM University-AP, Andhra Pradesh Neerukonda, Guntur (Dt) Andhra Pradesh 522240 India
| | - Nimai Mishra
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar Odisha 751013 India
| |
Collapse
|
8
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Wang Z, Shang L, Yang H, Zhao Y, Waterhouse GIN, Li D, Shi R, Zhang T. Titania-Supported Cu-Single-Atom Catalyst for Electrochemical Reduction of Acetylene to Ethylene at Low-Concentrations with Suppressed Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303818. [PMID: 37433306 DOI: 10.1002/adma.202303818] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Electrochemical acetylene reduction (EAR) is a promising strategy for removing acetylene from ethylene-rich gas streams. However, suppressing the undesirable hydrogen evolution is vital for practical applications in acetylene-insufficient conditions. Herein, Cu single atoms are immobilized on anatase TiO2 nanoplates (Cu-SA/TiO2 ) for electrochemical acetylene reduction, achieving an ethylene selectivity of ≈97% with a 5 vol% acetylene gas feed (Ar balance). At the optimal Cu-single-atom loading, Cu-SA/TiO2 is able to effectively suppress HER and ethylene over-hydrogenation even when using dilute acetylene (0.5 vol%) or ethylene-rich gas feeds, delivering a 99.8% acetylene conversion, providing a turnover frequency of 8.9 × 10-2 s-1 , which is superior to other EAR catalysts reported to date. Theoretical calculations show that the Cu single atoms and the TiO2 support acted cooperatively to promote charge transfer to adsorbed acetylene molecules, whilst also inhibiting hydrogen generation in alkali environments, thus allowing selective ethylene production with negligible hydrogen evolution at low acetylene concentrations.
Collapse
Affiliation(s)
- Zeping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Peng X, Zhang R, Mi Y, Wang HT, Huang YC, Han L, Head AR, Pao CW, Liu X, Dong CL, Liu Q, Zhang S, Pong WF, Luo J, Xin HL. Disordered Au Nanoclusters for Efficient Ammonia Electrosynthesis. CHEMSUSCHEM 2023; 16:e202201385. [PMID: 36683007 DOI: 10.1002/cssc.202201385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The electrochemical nitrogen (N2 ) reduction reaction (N2 RR) under mild conditions is a promising and environmentally friendly alternative to the traditional Haber-Bosch process with high energy consumption and greenhouse emission for the synthesis of ammonia (NH3 ), but high-yielding production is rendered challenging by the strong nonpolar N≡N bond in N2 molecules, which hinders their dissociation or activation. In this study, disordered Au nanoclusters anchored on two-dimensional ultrathin Ti3 C2 Tx MXene nanosheets are explored as highly active and selective electrocatalysts for efficient N2 -to-NH3 conversion, exhibiting exceptional activity with an NH3 yield rate of 88.3±1.7 μg h-1 mgcat. -1 and a faradaic efficiency of 9.3±0.4 %. A combination of in situ near-ambient pressure X-ray photoelectron spectroscopy and operando X-ray absorption fine structure spectroscopy is employed to unveil the uniqueness of this catalyst for N2 RR. The disordered structure is found to serve as the active site for N2 chemisorption and activation during the N2 RR process.
Collapse
Affiliation(s)
- Xianyun Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
- Institute of Zhejiang University - Quzhou, Zhejiang, Quzhou, 324000, P. R. China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Yuying Mi
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Hsiao-Tsu Wang
- Bachelor's Program in Advanced Materials Science, Tamkang University, New Taipei City, 25137, Taiwan
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Guangxi, Nanning, 530004, P. R. China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Sichuan, Chengdu, 610106, P. R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Henan, Zhengzhou, 450000, P. R. China
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
11
|
Peng X, Zeng L, Wang D, Liu Z, Li Y, Li Z, Yang B, Lei L, Dai L, Hou Y. Electrochemical C-N coupling of CO 2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem Soc Rev 2023; 52:2193-2237. [PMID: 36806286 DOI: 10.1039/d2cs00381c] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Electrochemical C-N coupling reactions based on abundant small molecules (such as CO2 and N2) have attracted increasing attention as a new "green synthetic strategy" for the synthesis of organonitrogen compounds, which have been widely used in organic synthesis, materials chemistry, and biochemistry. The traditional technology employed for the synthesis of organonitrogen compounds containing C-N bonds often requires the addition of metal reagents or oxidants under harsh conditions with high energy consumption and environmental concerns. By contrast, electrosynthesis avoids the use of other reducing agents or oxidants by utilizing "electrons", which are the cleanest "reagent" and can reduce the generation of by-products, consistent with the atomic economy and green chemistry. In this study, we present a comprehensive review on the electrosynthesis of high value-added organonitrogens from the abundant CO2 and nitrogenous small molecules (N2, NO, NO2-, NO3-, NH3, etc.) via the C-N coupling reaction. The associated fundamental concepts, theoretical models, emerging electrocatalysts, and value-added target products, together with the current challenges and future opportunities are discussed. This critical review will greatly increase the understanding of electrochemical C-N coupling reactions, and thus attract research interest in the fixation of carbon and nitrogen.
Collapse
Affiliation(s)
- Xianyun Peng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Libin Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Dashuai Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Zhibin Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Yan Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
- Donghai Laboratory, Zhoushan, China
| |
Collapse
|
12
|
Huang Z, Rafiq M, Woldu AR, Tong QX, Astruc D, Hu L. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Fang X, Yang X, Wang H. The transition metal doped B cluster (TM4B18) as catalysis for nitrogen fixation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
14
|
Liu J, He L, Zhao S, Li S, Hu L, Tian J, Ding J, Zhang Z, Du M. Plasma-Assisted Defect Engineering on p-n Heterojunction for High-Efficiency Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205786. [PMID: 36683249 PMCID: PMC10015844 DOI: 10.1002/advs.202205786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Linghao He
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Shuangrun Zhao
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Sizhuan Li
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Lijun Hu
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Jia‐Yue Tian
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Junwei Ding
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Zhihong Zhang
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| | - Miao Du
- College of Material and Chemical EngineeringInstitute of New Energy Science and TechnologySchool of Future Hydrogen Energy TechnologyZhengzhou University of Light IndustryZhengzhou450001P. R. China
| |
Collapse
|
15
|
Li H, Xu X, Lin X, Chen J, Zhu K, Peng F, Gao F. Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction. NANOSCALE 2023; 15:4071-4079. [PMID: 36734374 DOI: 10.1039/d2nr06195c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N2 adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO3 by pyrolysis at 450 °C (450-NiMnO3) to achieve remarkable NRR activity. The NiMnO3 3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N2 adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO3, 450-NiMnO3 showed excellent performance for nitrogen reduction to ammonia with a high NH3 yield of 31.44 μg h-1 mgcat-1 (at -0.3 V vs. RHE) and a splendid FE of 14.5% (at -0.1 V vs. RHE) in 0.1 M KOH. 450-NiMnO3 also shows high long-term electrochemical stability with excellent selectivity for NH3 formation. 15N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO3. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaoyue Xu
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaohu Lin
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Jianmin Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Kunling Zhu
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|
16
|
Recent Progress in Pd based Electrocatalysts for Electrochemical Nitrogen Reduction to Ammonia. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Xie HQ, Zheng X, Feng QY, Chen XP, Zou ZH, Wang QX, Tang J, Li Y, Ling Y. Single-Step Synthesis of Fe-Fe 3 O 4 Catalyst for Highly Efficient and Selective Electrochemical Nitrogen Reduction. CHEMSUSCHEM 2022; 15:e202200919. [PMID: 35906181 DOI: 10.1002/cssc.202200919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen reduction electrocatalysts are highly attractive for catalytic science. However, most electrocatalysts are limited by their low faradaic efficiency, poor ammonia yield, and tedious and costly catalyst synthesis process. In this work, Fe-based oxide composite nanoparticles with steady chemical states are prepared by a single-step green procedure under ambient conditions. The resulting Fe-Fe3 O4 demonstrates remarkable activity and selectivity for nitrogen reduction reaction (NRR) with the highest faradaic efficiency of 53.2±1.8 % and NH3 yield rate of 24.6±0.8 μg h-1 mgcat. -1 at -0.4 V (vs. RHE) in 0.1 m Na2 SO4 electrolyte. Characterization experiments and theoretical calculation reveal that Fe-Fe3 O4 exhibits significantly enhanced charge transfer capability and suppresses the competitive HER process.
Collapse
Affiliation(s)
- Hui-Qi Xie
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| | - Xuan Zheng
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| | - Qing-Yun Feng
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| | - Xiao-Ping Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| | - Ze-Hua Zou
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| | - Qing-Xiang Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| | - Jing Tang
- College of Chemistry, Fuzhou University, 350116, Fuzhou, P. R. China
| | - Yi Li
- College of Chemistry, Fuzhou University, 350116, Fuzhou, P. R. China
| | - Yun Ling
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 363000, Zhangzhou, P. R. China
| |
Collapse
|
18
|
Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Chang B, Wu S, Wang Y, Sun T, Cheng Z. Emerging single-atom iron catalysts for advanced catalytic systems. NANOSCALE HORIZONS 2022; 7:1340-1387. [PMID: 36097878 DOI: 10.1039/d2nh00362g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the elusive structure-function relationship, traditional nanocatalysts always yield limited catalytic activity and selectivity, making them practically difficult to replace natural enzymes in wide industrial and biomedical applications. Accordingly, single-atom catalysts (SACs), defined as catalysts containing atomically dispersed active sites on a support material, strikingly show the highest atomic utilization and drastically boosted catalytic performances to functionally mimic or even outperform natural enzymes. The molecular characteristics of SACs (e.g., unique metal-support interactions and precisely located metal sites), especially single-atom iron catalysts (Fe-SACs) that have a similar catalytic structure to the catalytically active center of metalloprotease, enable the accurate identification of active centers in catalytic reactions, which afford ample opportunity for unraveling the structure-function relationship of Fe-SACs. In this review, we present an overview of the recent advances of support materials for anchoring an atomic dispersion of Fe. Subsequently, we highlight the structural designability of support materials as two sides of the same coin. Moreover, the applications described herein illustrate the utility of Fe-SACs in a broad scope of industrially and biologically important reactions. Finally, we present an outlook of the major challenges and opportunities remaining for the successful combination of single Fe atoms and catalysts.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| |
Collapse
|
20
|
Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Shahid M, Javed HMA, Ahmad MI, Qureshi AA, Khan MI, Alnuwaiser MA, Ahmed A, Khan MA, Tag-ElDin ESM, Shahid A, Rafique A. A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3413. [PMID: 36234541 PMCID: PMC9565502 DOI: 10.3390/nano12193413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the synthesis of ammonia (NH3) has been developed by electrocatalytic technology that is a potential way to effectively replace the Haber-Bosch process, which is an industrial synthesis of NH3. Industrial ammonia has caused a series of problems for the population and environment. In the face of sustainable green synthesis methods, the advantages of electrocatalytic nitrogen reduction for synthesis of NH3 in aqueous media have attracted a great amount of attention from researchers. This review summarizes the recent progress on the highly efficient electrocatalysts based on 2D non-metallic nanomaterial and provides a brief overview of the synthesis principle of electrocatalysis and the performance measurement indicators of electrocatalysts. Moreover, the current development of N2 reduction reaction (NRR) electrocatalyst is discussed and prospected.
Collapse
Affiliation(s)
- Muhammad Shahid
- Nanomaterials and Solar Energy Research Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiz Muhammad Asif Javed
- Nanomaterials and Solar Energy Research Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Ahmad
- Nanomaterials and Solar Energy Research Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Akbar Ali Qureshi
- Department of Mechanical Engineering, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Ijaz Khan
- Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China
- Department of Mechanical Engineering, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princes Nourah Bin Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Arslan Ahmed
- Department of Mechanical Engineering, COMSATS University Islamabad, Wah Campus, Rawalpindi 47010, Pakistan
| | - Muhammad Azhar Khan
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Arslan Shahid
- Nanomaterials and Solar Energy Research Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Aiman Rafique
- Nanomaterials and Solar Energy Research Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
22
|
Gurusamy T, Mohan NG, Kandregula GR, Murugaiah DK, Srinivasan R, Ramanujam K. Mechanistic analysis of the dissociative reduction of nitrogen to ammonia by ZnMn2O4 catalyst derived from spent batteries. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Cao J, Yin W, Zhang Q, Yao Y, Cao J, Wei X. Intrinsic anion vacancy of Mo6X6 (X = S, Se, Te) nanowires as a promising nitrogen fixation catalysis: A first-principles study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Xiu Z, Zheng M, Li J, Wei F, Dong C, Zhang M, Zhou X, Han X. Fe-VS 2 Electrocatalyst with Organic Matrix-Mediated Electron Transfer for Highly Efficient Nitrogen Fixation. CHEMSUSCHEM 2022; 15:e202200741. [PMID: 35670288 DOI: 10.1002/cssc.202200741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical N2 fixation is considered to be a promising alternative to Haber-Bosch technology. Inspired by the composition and structure of natural nitrogenase, Fe-doped VS2 nanosheets were prepared via one-step solvothermal method. The electron transfer system mediated by organic conductive polymer (1-AAQ-PA) was constructed to promote the electron transfer between Fe-VS2 nanosheets and the electrode in electrocatalytic N2 reduction reaction (NRR). The obtained 1-AAQ-PA-Fe-VS2 electrode converted N2 to NH3 with a yield of 31.6 μg h-1 mg-1 at -0.35 V vs. reversible hydrogen electrode and high faradaic efficiency of 23.5 %. The introduction of Fe dopants favored N2 adsorption and activation, while the Li-S bond between Fe-VS2 and Li2 SO4 effectively inhibited hydrogen evolution. The highly efficient electron utilization in the electrocatalytic NRR process was realized using the 1-AAQ-PA as the electron transfer medium. Density functional theory calculations showed that N2 was preferentially adsorbed on Fe and reduced to NH3 via both distal and alternating mechanism.
Collapse
Affiliation(s)
- Ziyuan Xiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Mingrui Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Fu Y, Liao Y, Li P, Li H, Jiang S, Huang H, Sun W, Li T, Yu H, Li K, Li H, Jia B, Ma T. Layer structured materials for ambient nitrogen fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Pan T, Wang L, Shen Y, Zhang X, Luo C, Li H, Wu P, Zhang H, Zhang W, Savilov SV, Huo F. Amorphous Chromium Oxide with Hollow Morphology for Nitrogen Electrochemical Reduction under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14474-14481. [PMID: 35290027 DOI: 10.1021/acsami.2c00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR), an alternative method of nitrogen fixation and conversion under ambient conditions, represents a promising strategy for tackling the energy-intensive issue. The design of high-performance electrocatalysts is one of the key issues to realizing the application of NRR, but most of the current catalysts rely on the use of crystalline materials, and shortcomings such as a limited number of catalytic active sites and sluggish reaction kinetics arise. Herein, an amorphous metal oxide catalyst H-CrOx/C-550 with hierarchically porous structure is constructed, which shows superior electrocatalytic performance toward NRR under ambient conditions (yield of 19.10 μg h-1 mgcat-1 and Faradaic efficiency of 1.4% at -0.7 V vs a reversible hydrogen electrode, higher than that of crystalline Cr2O3 and solid counterparts). Notably, the amorphous metal oxide obtained by controlled pyrolysis of metal-organic frameworks (MOFs) possess abundant unsaturated catalytic sites and optimized conductivity due to the controllable degree of metal-oxygen bond reconstruction and the doping of carbon materials derived from organic ligands. This work demonstrates MOF-derived porous amorphous materials as a viable alternative to current electrocatalysts for NH3 synthesis at ambient conditions.
Collapse
Affiliation(s)
- Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Liu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chengyang Luo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hao Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Serguei V Savilov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie gory Moscow 119991, Russian Federation
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
27
|
Hou Y, Lv J, Quan W, Lin Y, Hong Z, Huang Y. Strategies for Electrochemically Sustainable H 2 Production in Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104916. [PMID: 35018743 PMCID: PMC8895139 DOI: 10.1002/advs.202104916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Acidified water electrolysis with fast kinetics is widely regarded as a promising option for producing H2 . The main challenge of this technique is the difficulty in realizing sustainable H2 production (SHP) because of the poor stability of most electrode catalysts, especially on the anode side, under strongly acidic and highly polarized electrochemical environments, which leads to surface corrosion and performance degradation. Research efforts focused on tuning the atomic/nano structures of catalysts have been made to address this stability issue, with only limited effectiveness because of inevitable catalyst degradation. A systems approach considering reaction types and system configurations/operations may provide innovative viewpoints and strategies for SHP, although these aspects have been overlooked thus far. This review provides an overview of acidified water electrolysis for systematic investigations of these aspects to achieve SHP. First, the fundamental principles of SHP are discussed. Then, recent advances on design of stable electrode materials are examined, and several new strategies for SHP are proposed, including fabrication of symmetrical heterogeneous electrolysis system and fluid homogeneous electrolysis system, as well as decoupling/hybrid-governed sustainability. Finally, remaining challenges and corresponding opportunities are outlined to stimulate endeavors toward the development of advanced acidified water electrolysis techniques for SHP.
Collapse
Affiliation(s)
- Yuxi Hou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Jiangquan Lv
- College of Electronics and Information Science & Organic Optoelectronics Engineering Research Center of Fujian's UniversitiesFujian Jiangxia UniversityFuzhouFujian350108P. R. China
| | - Weiwei Quan
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Yingbin Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Yiyin Huang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| |
Collapse
|
28
|
Huang P, Fan T, Ma X, Zhang J, Zhang Y, Chen Z, Yi X. 3D Flower-Like Zinc Cobaltite for Electrocatalytic Reduction of Nitrate to Ammonia under Ambient Conditions. CHEMSUSCHEM 2022; 15:e202102049. [PMID: 34927377 DOI: 10.1002/cssc.202102049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Nitrate (NO3 - ) as a common pollutant of groundwater causes drinking water safety problems and seriously endangers people's health. Electrochemical reduction of nitrate to ammonia under ambient condition is a green and significant route to reduce the concentration of NO3 - and produce ammonia (NH3 ), known as a complement to the Haber-Bosch reaction. Currently, noble-metal electrocatalysts are often used in electrochemical reduction of NO3 - , but high cost and scarcity limited their application. Herein, three-dimensional (3D) flower-like zinc cobaltite (ZnCo2 O4 ) electrocatalyst was developed to convert nitrate into ammonia at room temperature. The NH3 yield rate could reach up to around 2100 μg mg-1 h-1 at a potential of -0.6 V vs. reversible hydrogen electrode (RHE), which was around 2.0 times higher than that of pristine Co3 O4 . In addition, the NH3 faradaic efficiency of ZnCo2 O4 electrocatalyst could reach around 95.4 % at potential of -0.4 V vs. RHE with good structural and morphological stability, which surpassed most reported non-noble metal-based electrocatalysts. Further studies concluded that the improved activity of electrocatalytic NO3 - reduction was ascribed to the existence of abundant active sites and the charge transfer from Co atoms to Zn atoms after Zn doping. Importantly, this work opens a new path for the development of Co-based materials as electrocatalysts for reducing nitrate to ammonia.
Collapse
Affiliation(s)
- Pingping Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tingting Fan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xintao Ma
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiguang Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanping Zhang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhou Chen
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaodong Yi
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
29
|
Tang X, Tian X, Zhou L, Yang F, He R, Zhao X, Zhu W. Connection of Ru Nanoparticles with Rich Defects Enables Enhanced Electrochemical Reduction of Nitrogen. Phys Chem Chem Phys 2022; 24:11491-11495. [DOI: 10.1039/d2cp00340f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical reduction of N2 into NH3 under ambient condition is an attractive project in chemical industry, whereas the chemical inertness of N2 and competing hydrogen evolution reaction hamper the activity...
Collapse
|
30
|
Li H, Chen S, He M, Jin J, Zhu K, Peng F, Gao F. Self-supported V-doped NiO electrocatalyst achieving a high ammonia yield of 30.55 μg h −1 cm −2 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium doped nickel oxide grows on nickel foam exhibits a splendid NH3 yield and a high faradaic efficiency.
Collapse
Affiliation(s)
- Heen Li
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shuheng Chen
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Maoyue He
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jing Jin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kunling Zhu
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
31
|
Pang Y, Su C, Jia G, Xu L, Shao Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem Soc Rev 2021; 50:12744-12787. [PMID: 34647937 DOI: 10.1039/d1cs00120e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.
Collapse
Affiliation(s)
- Yingping Pang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
32
|
Niu X, Shi A, Sun D, Xiao S, Zhang T, Zhou Z, Li X, Wang J. Photocatalytic Ammonia Synthesis: Mechanistic Insights into N 2 Activation at Oxygen Vacancies under Visible Light Excitation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Anqi Shi
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dazhong Sun
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shanshan Xiao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Tingbo Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Zhaobo Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xing’ao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
- Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
33
|
Single transition metal atom modified MoSe2 as a promising electrocatalyst for nitrogen Fixation: A first-principles study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Guo Z, Jasin Arachchige L, Qiu S, Zhang X, Xu Y, Langford SJ, Sun C. p-Block element-doped silicon nanowires for nitrogen reduction reaction: a DFT study. NANOSCALE 2021; 13:14935-14944. [PMID: 34533164 DOI: 10.1039/d1nr03448k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic nitrogen reduction reaction (NRR) is a promising, green route to chemically reducing N2 into NH3 under ambient conditions, correlating to the N2 fixation process of nitrogenase enzymes. To achieve high-yield NRR with sunlight as the driving force, high-performance photocatalysts are essential. One-dimensional silicon nanowires (1D SiNWs) are a great photoelectric candidate, but inactive for NRR due to their inability to capture N2. In this study, we proposed SiNWs doped by p-block elements (B, C, P) to tune the affinity to N2 and demonstrated that two-coordinated boron (B2C) offers an ultra-low overpotential (η) of 0.34 V to catalyze full NRR, which is even much lower than that of flat benchmark Ru(0001) catalysts (η = 0.92 V). Moreover, aspects including suppressed hydrogen evolution reaction (HER), high-spin ground state of the B2C site, and decreased band gap after B-doping ensure the high selectivity and photocatalytic activity. Finally, this work not only shows the potential use of metal-free p-block element-based catalysts, but also would facilitate the development of 1D nanomaterials towards efficient reduction of N2 into NH3.
Collapse
Affiliation(s)
- Zhongyuan Guo
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Lakshitha Jasin Arachchige
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Siyao Qiu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaoli Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Xu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Steven J Langford
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
35
|
Wang X, Wu D, Liu S, Zhang J, Fu XZ, Luo JL. Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia. NANO-MICRO LETTERS 2021; 13:125. [PMID: 34138373 PMCID: PMC8113419 DOI: 10.1007/s40820-021-00651-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 05/19/2023]
Abstract
Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at - 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N2 adsorption, activation and selective reduction to NH3 by the distal mechanism. This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
Collapse
Affiliation(s)
- Xuewan Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dan Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Suyun Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
36
|
Chen Q, Zhang X, Jin Y, Zhou X, Yang Z, Nie H. An Overview on Noble Metal (Group VIII)-based Heterogeneous Electrocatalysts for Nitrogen Reduction Reaction. Chem Asian J 2020; 15:4131-4152. [PMID: 33025764 DOI: 10.1002/asia.202000969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Indexed: 02/04/2023]
Abstract
The typically the Haber-Bosch process of nitrogen (N2 ) reduction to ammonia (NH3 ) production, expends a lot of energy, resulting in severe environmental issues. Electro-catalytic N2 reduction to NH3 formation by renewable resources is one of the effective ways to settle the issue. However, the electro-catalytic performances and selectivity of catalysts for electrochemical nitrogen reduction reaction (NRR) are very low. Therefore, it is of great significance to develop more efficient electro-catalysts to satisfy the needs of practical use. Among the reported catalysts, those based on Group VIII noble metals heterogeneous catalysts display excellent NRR activities and high selectivity because of their good conductivity, rich active surface area, unfilled d-orbitals, and the abilities with easy adsorption of reactants and stable reaction intermediates. Herein, we will introduce the progress of Group VIII precious metals heterogeneous catalysts applied in the electrocatalytic N2 reduction reaction. Then single precious metal electrocatalysts, precious metal alloy electrocatalysts, heterojunction structure electrocatalysts, and precious metal compounds based on the strategies of morphology engineering, crystal facet engineering, defect engineering, heteroatom doping, and synergetic interface engineering will be discussed. Finally, the challenges and prospects of the NH3 synthesis have been put forward. In the review, we will provide helpful direction to the development of effective electro-catalysts for catalytic N2 reduction reaction.
Collapse
Affiliation(s)
- Qianqian Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Xiaodong Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Yuwei Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, P. R. China
| |
Collapse
|