1
|
Xie C, Zhang S, Qiao X, Hao N. Transcranial direct current stimulation targeting the bilateral IFG alters cognitive processes during creative ideation. NPJ SCIENCE OF LEARNING 2024; 9:75. [PMID: 39632885 PMCID: PMC11618385 DOI: 10.1038/s41539-024-00285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study investigated whether transcranial direct current stimulation (tDCS) targeting the inferior frontal gyrus (IFG) can alter the thinking process and neural basis of creativity. Participants' performance on the compound remote associates (CRA) task was analyzed considering the semantic features of each trial after receiving different tDCS protocols (left cathodal and right anodal, L + R-; right cathodal and left anodal, L-R+; and Sham). Moreover, we constructed and compared 80 prediction models of CRA performance for each group based on task-related functional connectivity. Results showed that L + R- stimulation improved performance in semantically bundled CRA trials, while L-R+ stimulation enhanced performance in trials with greater semantic distance. Furthermore, alpha-band task connectivity models for the L + R- group showed inferior performance and greater left frontal lateralization than other two groups. These findings suggest that tDCS targeting the bilateral IFG alters cognitive processes during creative ideation rather than enhancing or impairing an established thinking process.
Collapse
Affiliation(s)
- Cong Xie
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shuangfei Zhang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xinuo Qiao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Konrad K, Puetz VB. A context-dependent model of resilient functioning after childhood maltreatment-the case for flexible biobehavioral synchrony. Transl Psychiatry 2024; 14:388. [PMID: 39333480 PMCID: PMC11436866 DOI: 10.1038/s41398-024-03092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Many children who experience childhood adversity, whether in the form of threat or deprivation, develop adaptive competencies that lead to resilient functioning. Still, research has not succeeded in accurately predicting the level of resilient functioning by any kind of biomarkers, likely because it has sidelined the flexibility inherent in a construct that is situationally and developmentally variable. Whilst recent research acknowledges the importance of redefining resilience in order to reflect its dynamic nature after adversity, evidence for specific behaviors that are developmentally adaptive and dynamic throughout the lifespan is limited. We here propose a model in which resilient functioning is crucially dependent on the individual's capability to flexibly synchronize with and segregate from another's cognitive-affective, behavioral, and physiological states, known as 'biobehavioral synchrony'. Such an adaptive interpersonal skill is rooted in (a) the early caregiving experience and its regulatory effects on an individual's physiological stress reactivity, as well as (b) the development of self-other distinction which can be affected by childhood maltreatment. Bridging the gap between accounts of flexible resilient functioning and the latest thinking in biobehavioral synchrony, we will review behavioral and neurobiological evidence that threat and deprivation in childhood interfere with the development of dynamic, context-sensitive boundaries between self and other, mediated by the (right) tempo-parietal junction (a central neural hub for interpersonal synchronization), which puts the individual at risk for affective fusion or cut-off from others' arousal states. Our proposed model charts a path for investigating the differential effects of maltreatment experiences and mechanisms for intergenerational transmission of non-sensitive caregiving. We conclude with metrics, data analysis methods, and strategies to facilitate flexible biobehavioral synchrony.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Juelich, Germany
| | - Vanessa B Puetz
- Division of Psychology and Language Sciences, University College London, London, UK.
- Anna Freud National Centre for Children and Families, London, UK.
| |
Collapse
|
3
|
Kuai H, Chen J, Tao X, Cai L, Imamura K, Matsumoto H, Liang P, Zhong N. Never-Ending Learning for Explainable Brain Computing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307647. [PMID: 38602432 PMCID: PMC11200082 DOI: 10.1002/advs.202307647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Exploring the nature of human intelligence and behavior is a longstanding pursuit in cognitive neuroscience, driven by the accumulation of knowledge, information, and data across various studies. However, achieving a unified and transparent interpretation of findings presents formidable challenges. In response, an explainable brain computing framework is proposed that employs the never-ending learning paradigm, integrating evidence combination and fusion computing within a Knowledge-Information-Data (KID) architecture. The framework supports continuous brain cognition investigation, utilizing joint knowledge-driven forward inference and data-driven reverse inference, bolstered by the pre-trained language modeling techniques and the human-in-the-loop mechanisms. In particular, it incorporates internal evidence learning through multi-task functional neuroimaging analyses and external evidence learning via topic modeling of published neuroimaging studies, all of which involve human interactions at different stages. Based on two case studies, the intricate uncertainty surrounding brain localization in human reasoning is revealed. The present study also highlights the potential of systematization to advance explainable brain computing, offering a finer-grained understanding of brain activity patterns related to human intelligence.
Collapse
Affiliation(s)
- Hongzhi Kuai
- Faculty of EngineeringMaebashi Institute of TechnologyGunma371–0816Japan
- School of Psychology and Beijing Key Laboratory of Learning and CognitionCapital Normal UniversityBeijing100048China
| | - Jianhui Chen
- Faculty of Information TechnologyBeijing University of TechnologyBeijing100124China
- Beijing International Collaboration Base on Brain Informatics and Wisdom ServicesBeijing100124China
| | - Xiaohui Tao
- School of Mathematics, Physics and ComputingUniversity of Southern QueenslandToowoomba4350Australia
| | - Lingyun Cai
- School of Psychology and Beijing Key Laboratory of Learning and CognitionCapital Normal UniversityBeijing100048China
| | - Kazuyuki Imamura
- Faculty of EngineeringMaebashi Institute of TechnologyGunma371–0816Japan
| | - Hiroki Matsumoto
- Faculty of EngineeringMaebashi Institute of TechnologyGunma371–0816Japan
| | - Peipeng Liang
- School of Psychology and Beijing Key Laboratory of Learning and CognitionCapital Normal UniversityBeijing100048China
| | - Ning Zhong
- Faculty of EngineeringMaebashi Institute of TechnologyGunma371–0816Japan
- School of Psychology and Beijing Key Laboratory of Learning and CognitionCapital Normal UniversityBeijing100048China
- Beijing International Collaboration Base on Brain Informatics and Wisdom ServicesBeijing100124China
| |
Collapse
|
4
|
Zhang D, Zhang S, Lei Z, Li Y, Li X, Gu R. Why people engage in corrupt collaboration: an observation at the multi-brain level. Cereb Cortex 2023; 33:8465-8476. [PMID: 37083271 PMCID: PMC10786094 DOI: 10.1093/cercor/bhad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Recent studies suggest that corrupt collaboration (i.e. acquiring private benefits with joint immoral acts) represents a dilemma between the honesty and reciprocity norms. In this study, we asked pairs of participants (labeled as A and B) to individually toss a coin and report their outcomes; their collective benefit could be maximized by dishonestly reporting (a corrupt behavior). As expected, the likelihood of corrupt behavior was high; this probability was negatively correlated with player A's moral judgment ability but positively correlated with player B's empathic concern (EC). Functional near-infrared spectroscopy data revealed that the brain-to-brain synchronization in the right dorsolateral prefrontal cortex was associated with fewer corrupt behaviors, and that it mediated the relationship between player A's moral judgment ability and corrupt collaboration. Meanwhile, the right temporal-parietal junction synchronization was associated with more corrupt behaviors, and that it mediated the relationship between player B's EC and corrupt collaboration. The roles of these 2 regions are interpreted according to the influence of the honesty and reciprocity norms on corrupt collaboration. In our opinion, these findings provide insight into the underlying mechanisms and modulating factors of corrupt collaboration.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Shen Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhen Lei
- China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Yiwei Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xianchun Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ma R, Xia X, Zhang W, Lu Z, Wu Q, Cui J, Song H, Fan C, Chen X, Zha R, Wei J, Ji GJ, Wang X, Qiu B, Zhang X. High Gamma and Beta Temporal Interference Stimulation in the Human Motor Cortex Improves Motor Functions. Front Neurosci 2022; 15:800436. [PMID: 35046771 PMCID: PMC8761631 DOI: 10.3389/fnins.2021.800436] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Temporal interference (TI) stimulation is a new technique of non-invasive brain stimulation. Envelope-modulated waveforms with two high-frequency carriers can activate neurons in target brain regions without stimulating the overlying cortex, which has been validated in mouse brains. However, whether TI stimulation can work on the human brain has not been elucidated. Objective: To assess the effectiveness of the envelope-modulated waveform of TI stimulation on the human primary motor cortex (M1). Methods: Participants attended three sessions of 30-min TI stimulation during a random reaction time task (RRTT) or a serial reaction time task (SRTT). Motor cortex excitability was measured before and after TI stimulation. Results: In the RRTT experiment, only 70 Hz TI stimulation had a promoting effect on the reaction time (RT) performance and excitability of the motor cortex compared to sham stimulation. Meanwhile, compared with the sham condition, only 20 Hz TI stimulation significantly facilitated motor learning in the SRTT experiment, which was significantly positively correlated with the increase in motor evoked potential. Conclusion: These results indicate that the envelope-modulated waveform of TI stimulation has a significant promoting effect on human motor functions, experimentally suggesting the effectiveness of TI stimulation in humans for the first time and paving the way for further explorations.
Collapse
Affiliation(s)
- Ru Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xinzhao Xia
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Zhuo Lu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qianying Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Jiangtian Cui
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Hongwen Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Chuan Fan
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xueli Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Rujing Zha
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Junjie Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaochu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
A Novel Perspective for Examining and Comparing Real and Virtual Test Tasks Performed by the Dominant and Non-Dominant Hand in Healthy Adults. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study presents a novel perspective for the study of functional lateralization in a virtual reality environment. In the model study of handedness, the recognition of the dominant and non-dominant hand in real and virtual conditions was assessed using selected tests, such as a real light exposure test of Piórkowski’s apparatus and classical clinical tests, as well as virtual test tasks, in healthy adults. Statistically significant differences between the dominant and non-dominant hand were observed for tests carried out both in classical conditions and the virtual environment. The results and findings of other studies suggest that the virtual reality approach is a very promising and sensitive tool in the research on functional asymmetries in healthy and disease for motor skills and cognition processes.
Collapse
|
7
|
van Bueren NER, Reed TL, Nguyen V, Sheffield JG, van der Ven SHG, Osborne MA, Kroesbergen EH, Cohen Kadosh R. Personalized brain stimulation for effective neurointervention across participants. PLoS Comput Biol 2021; 17:e1008886. [PMID: 34499639 PMCID: PMC8454957 DOI: 10.1371/journal.pcbi.1008886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/21/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence from human-based research has highlighted that the prevalent one-size-fits-all approach for neural and behavioral interventions is inefficient. This approach can benefit one individual, but be ineffective or even detrimental for another. Studying the efficacy of the large range of different parameters for different individuals is costly, time-consuming and requires a large sample size that makes such research impractical and hinders effective interventions. Here an active machine learning technique is presented across participants-personalized Bayesian optimization (pBO)-that searches available parameter combinations to optimize an intervention as a function of an individual's ability. This novel technique was utilized to identify transcranial alternating current stimulation (tACS) frequency and current strength combinations most likely to improve arithmetic performance, based on a subject's baseline arithmetic abilities. The pBO was performed across all subjects tested, building a model of subject performance, capable of recommending parameters for future subjects based on their baseline arithmetic ability. pBO successfully searches, learns, and recommends parameters for an effective neurointervention as supported by behavioral, simulation, and neural data. The application of pBO in human-based research opens up new avenues for personalized and more effective interventions, as well as discoveries of protocols for treatment and translation to other clinical and non-clinical domains.
Collapse
Affiliation(s)
- Nienke E. R. van Bueren
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas L. Reed
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Vu Nguyen
- Department of Materials, University of Oxford, Oxford, United Kingdom
- Amazon, Adelaide, Australia
| | - James G. Sheffield
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | - Michael A. Osborne
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Evelyn H. Kroesbergen
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
8
|
Pereira HC, Sousa D, Simões M, Martins R, Amaral C, Lopes V, Crisóstomo J, Castelo-Branco M. Effects of anodal multichannel transcranial direct current stimulation (tDCS) on social-cognitive performance in healthy subjects: A randomized sham-controlled crossover pilot study. PROGRESS IN BRAIN RESEARCH 2021; 264:259-286. [PMID: 34167659 DOI: 10.1016/bs.pbr.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent studies suggest that temporoparietal junction (TPJ) modulation can influence attention and social cognition performance. Nevertheless, no studies have used multichannel transcranial direct current stimulation (tDCS) over bilateral TPJ to estimate the effects on these neuropsychological functions. The project STIPED is using optimized multichannel stimulation as an innovative treatment approach for chronic pediatric neurodevelopmental disorders, namely in children/adolescents with Autism Spectrum Disorder (ASD). In this pilot study, we aim to explore whether anodal multichannel tDCS coupled with a Joint Attention Task (JAT) influences social-cognitive task performance relative to sham stimulation, both in an Emotion Recognition Task (ERT) and in a Mooney Faces Detection Task (MFDT), as well as to evaluate this technique's safety and tolerability. Twenty healthy adults were enrolled in a randomized, single-blinded, sham-controlled, crossover study. During two sessions, participants completed the ERT and the MFDT before and after 20min of sham or anodal tDCS over bilateral TPJ. No significant differences on performance accuracy and reaction time were found between stimulation conditions for all tasks, including the JAT. A significant main time effect for overall accuracy and reaction time was found for the MFDT. Itching was the most common side effect and stimulation conditions detection was at chance level. Results suggest that multichannel tDCS over bilateral TPJ does not affect performance of low-level emotional recognition tasks in healthy adults. Although preliminary safety and tolerability are demonstrated, further studies over longer periods will be pursued to investigate the clinical efficacy in children/adolescents with ASD, where social cognition impairments are preponderant.
Collapse
Affiliation(s)
- H Catarina Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Daniela Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Marco Simões
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carlos Amaral
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vânia Lopes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Brambilla M, Dinkelbach L, Bigler A, Williams J, Zokaei N, Cohen Kadosh R, Brem AK. The Effect of Transcranial Random Noise Stimulation on Cognitive Training Outcome in Healthy Aging. Front Neurol 2021; 12:625359. [PMID: 33767658 PMCID: PMC7985554 DOI: 10.3389/fneur.2021.625359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Objective: Aging is associated with a decline in attentional and executive abilities, which are linked to physiological, structural, and functional brain changes. A variety of novel non-invasive brain stimulation methods have been probed in terms of their neuroenhancement efficacy in the last decade; one that holds significant promise is transcranial random noise stimulation (tRNS) that delivers an alternate current at random amplitude and frequency. The aim of this study was to investigate whether repeated sessions of tRNS applied as an add-on to cognitive training (CT) may induce long-term near and far transfer cognitive improvements. Methods: In this sham-controlled, randomized, double-blinded study forty-two older adults (age range 60-86 years) were randomly assigned to one of three intervention groups that received 20 min of 0.705 mA tRNS (N = 14), 1 mA tRNS (N = 14), or sham tRNS (N = 19) combined with 30 min of CT of executive functions (cognitive flexibility, inhibitory control, working memory). tRNS was applied bilaterally over the dorsolateral prefrontal cortices for five sessions. The primary outcome (non-verbal logical reasoning) and other cognitive functions (attention, memory, executive functions) were assessed before and after the intervention and at a 1-month follow-up. Results: Non-verbal logical reasoning, inhibitory control and reaction time improved significantly over time, but stimulation did not differentially affect this improvement. These changes occurred during CT, while no further improvement was observed during follow-up. Performance change in logical reasoning was significantly correlated with age in the group receiving 1 mA tRNS, indicating that older participants profited more from tRNS than younger participants. Performance change in non-verbal working memory was significantly correlated with age in the group receiving sham tRNS, indicating that in contrast to active tRNS, older participants in the sham group declined more than younger participants. Interpretation: CT induced cognitive improvements in all treatment groups, but tRNS did not modulate most of these cognitive improvements. However, the effect of tRNS depended on age in some cognitive functions. We discuss possible explanations leading to this result that can help to improve the design of future neuroenhancement studies in older populations.
Collapse
Affiliation(s)
- Michela Brambilla
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Biomedical and Clinical Sciences Department, Center for Research and Treatment on Cognitive Dysfunctions, “Luigi Sacco” Hospital, University of Milan, Milan, Italy
| | - Lars Dinkelbach
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Duesseldorf, Germany
| | - Annelien Bigler
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Joseph Williams
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nahid Zokaei
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna-Katharine Brem
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|