1
|
Zhang L, Wang R, Liang Li G, Niu H, Bai Y, Jiao T, Zhang X, Liu R, Streb C, Yuan M, Zhang G. Boosting electrocatalytic ammonia synthesis from nitrate by asymmetric chemical potential activated interfacial electric fields. J Colloid Interface Sci 2024; 676:636-646. [PMID: 39053411 DOI: 10.1016/j.jcis.2024.07.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The electrocatalytic nitrate reduction reaction (NO3- RR) has immense potential to alleviate the problem of groundwater pollution and may also become a key route for the environmentally benign production of ammonia (NH3) products. Here, the unique effects of interfacial electric fields arising from asymmetric chemical potentials and local defects were integrated into the binary Bi2S3-Bi2O3 sublattices for enhancing electrocatalytic nitrate reduction reactions. The obtained binary system showed a superior Faraday efficiency (FE) for ammonia production of 94 % and an NH3 yield rate of 89.83 mg gcat-1h-1 at -0.4 V vs. RHE. Systematic experimental and computational results confirmed that the concerted interplay between interfacial electric fields and local defects not only promoted the accumulation and adsorption of NO3-, but also contributed to the destabilization of *NO and the subsequent deoxygenation hydrogenation reaction. This work will stimulate future designs of heterostructured catalysts for efficient electrocatalytic nitrate reduction reactions.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Runzhi Wang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guo Liang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hexu Niu
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; National Energy Center for Coal to Liquids, Synfuels China Technology C. Ltd, Beijing 101400, PR China
| | - Tianao Jiao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China
| | - Xuehua Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Rongji Liu
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Queen Mary University of London Engineering School, Northwestern Polytechnical University Xi'an, 710072, PR China.
| | - Guangjin Zhang
- Center of Materials Science and Optoelectronics Engineering, Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
2
|
Guo C, Xu M, Tao Z, Liu J, Zhang S, He L, Du M, Zhang Z. Understanding electron structure of covalent triazine framework embraced with gold nanoparticles for nitrogen reduction to ammonia. J Colloid Interface Sci 2024; 675:369-378. [PMID: 38972124 DOI: 10.1016/j.jcis.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Regulating the electron structure and precise loading sites of metal-active sites within the highly conjugated and porous covalent-triazine frameworks (CTFs) is essential to promoting the nitrogen reduction reaction (NRR) performance for electrocatalytic ammonia (NH3) synthesis under ambient conditions. Herein, experimental method and density functional theory (DFT) calculations were conducted to deeply probe the effect on NRR of the modulation of modulating the electron structure and the loading site of gold nanoparticles (Au NPs) in a two-dimensional (2D) CTF. 2D CTF synthesized using melem and hexaketocyclohexane octahydrate as building blocks (denoted as M-HCO-CTF) served as a robust scaffold for loading Au NPs to form an M-HCO-CTF@AuNP hybrid. DFT results uncovered that well-defined Au sites with tunable local structure were the active site for driving the NRR, which can significantly suppress the conversion of H+ into *H adsorption and enhance the nitrogen (N2) adsorption/activation. The overlapped Au (3d) and *N2 (2p) orbitals lowered the free energy of the rate-determining step to form *NNH, thereby accelerating the NRR. The M-HCO-CTF@AuNPs electrocatalyst exhibited a large NH3 yield rate of 66.3 μg h-1 mg-1cat. and a high Faraday efficiency of 31.4 % at - 0.2 V versus reversible hydrogen electrode in 0.1 M HCl, superior to most reported CTF-based ones. This work can provide deep insights into the modulation of the electron structure of metal atoms within a porous organic framework for artificial NH3 synthesis through NRR.
Collapse
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Mingyang Xu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Jiameng Liu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Lee J, Park J, Jung KH, Lee S, Lee JJ, Wooh S, Lee DW. Enhancing Resistance to Wetting Transition through the Concave Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409389. [PMID: 39358940 DOI: 10.1002/adma.202409389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Water-repellent superhydrophobic surfaces are ubiquitous in nature. The fundamental understanding of bio/bio-inspired structures facilitates practical applications surmounting metastable superhydrophobicity. Typically, the hierarchical structure and/or reentrant morphology have been employed hitherto to suppress the Cassie-Baxter to Wenzel transition (CWT). Herein, a new design concept is reported, an effect of concave structure, which is vital for the stable superhydrophobic surface. The thermodynamic and kinetic stabilities of the concave pillars are evaluated by continuous exposure to various hydrostatic pressures and sudden impacts of water droplets with various Weber numbers (We), comparing them to the standard superhydrophobic normal pillars. Specifically, the concave pillar exhibits reinforced impact resistance preventing CWT below a critical We of ≈27.6, which is ≈1.6 times higher than that of the normal pillar (≈17.0). Subsequently, the stability of underwater air film (plastron) is investigated at various hydrostatic pressures. The results show that convex air caps formed at the concave cavities generate downward Laplace pressure opposing the exerted hydrostatic pressure between the pillars, thus impeding the hydrostatic pressure-dependent underwater air diffusion. Hence, the effects of trapped air caps contributing to the stable Cassie-Baxter state can offer a pioneering strategy for the exploration and utilization of superhydrophobic surfaces.
Collapse
Affiliation(s)
- Jinhoon Lee
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Jinwoo Park
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Kwang Hui Jung
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seunghyun Lee
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Jeong Jun Lee
- School of Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sanghyuk Wooh
- Department of Chemical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06794, Republic of Korea
| | - Dong Woog Lee
- Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
4
|
Du S, Zhou Y, Tao L, Wang S, Liu ZQ. Hydrogen Electrode Reactions in Energy-Related Electrocatalysis Systems. CHEMSUSCHEM 2024:e202400714. [PMID: 38859756 DOI: 10.1002/cssc.202400714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Hydrogen electrode reactions, including hydrogen evolution reactions and hydrogen oxidation reactions, are fundamental and crucial within aqueous electrochemistry. Particularly in energy-related electrocatalysis processes, there is a consistent involvement of hydrogen-related electrochemical processes, underscoring the need for in-depth study. This review encompasses significant reports, delving into elementary steps and reaction mechanisms of hydrogen electrode reactions, as well as catalyst design strategies. In addition, we focus on the application of hydrogen electrode reaction mechanism in different energy-related electrocatalytic reactions, and the significance of the promotion and suppression of reaction kinetics in different reaction systems. It thoroughly elucidated the significance of these reactions and the need for a deeper understanding, offering a novel perspective for the future development of this field.
Collapse
Affiliation(s)
- Shiqian Du
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yangyang Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Zhao-Qing Liu
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Ni Z, Yin F, Zhang J, Kofie G, Li G, Chen B, Guo P, Shi L. Boosting Electrocatalytic N 2 Reduction to NH 3 by Enhancing N 2 Activation via Interaction between Au Nanoparticles and MIL-101(Fe) in Neutral Electrolytes. Chemistry 2024; 30:e202401010. [PMID: 38517333 DOI: 10.1002/chem.202401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) has attracted much attention as a sustainable ammonia production technology, but it needs further exploration due to its slow kinetics and the existence of competitive side reactions. In this research, xAu/MIL-101(Fe) catalysts were obtained by loading gold nanoparticles (Au NPs) onto MIL-101(Fe) using a one-step reduction strategy. Herein, MIL-101(Fe), with high specific surface area and strong N2 adsorption capacity, is used as a support to disperse Au NPs to increase the electrochemical active surface area. Au NPs, with a high NRR activity, is introduced as the active site to promote charge transfer and intermediate formation rates. More importantly, the strong interaction between Au NPs and MIL-101(Fe) enhances the electron transfer between Au NPs and MIL-101(Fe), thereby enhancing the activation of N2 and achieving efficient NRR. Among the prepared catalysts, 15 %Au/MIL-101(Fe) has the highest NH3 yield of 46.37 μg h-1 mg-1 cat and a Faraday efficiency of 39.38 % at -0.4 V (vs. RHE). In-situ FTIR reveals that the NRR mechanism of 15 %Au/MIL-101(Fe) follows the binding alternating pathway and also indicates that the interaction between Au NPs and MIL-101(Fe) strengthens the activation of the N≡N bond in the rate-limiting process, thereby accelerating the NRR process.
Collapse
Affiliation(s)
- Ziyang Ni
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, China
| | - Jie Zhang
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gideon Kofie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Guoru Li
- Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, China
| | - Biaohua Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Pengju Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Liuliu Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
6
|
Liu Y, Zheng Y, Ren Y, Wang Y, You S, Liu M. Selective Nitrate Electroreduction to Ammonia on CNT Electrodes with Controllable Interfacial Wettability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7228-7236. [PMID: 38551367 DOI: 10.1021/acs.est.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The development of electrocatalysts that can efficiently reduce nitrate (NO3-) to ammonia (NH3) has garnered increasing attention due to their potential to reduce carbon emissions and promote environmental protection. Intensive efforts have focused on catalyst development, but a thorough understanding of the effect of the microenvironment around the reactive sites of the catalyst is also crucial to maximize the performance of the electrocatalysts. This study explored an electrocatalytic system that utilized quaternary ammonium surfactants with a range of alkyl chain lengths to modify an electrode made of carbon nanotubes (CNT), with the goal of regulating interfacial wettability toward NO3- reduction. Trimethyltetradecylammonium bromide with a moderate alkyl chain length created a very hydrophobic interface, which led to a high selectivity in the production of NH3 (∼87%). Detailed mechanistic investigations that used operando Fourier-transform infrared (FTIR) spectroscopy and online differential electrochemical mass spectrometry (DEMS) revealed that the construction of a hydrophobic modified CNT played a synergistic role in suppressing a side reaction involving the generation of hydrogen, which would compete with the reduction of NO3-. This electrocatalytic system led to a favorable process for the reduction of NO3- to NH3 through a direct electron transfer pathway. Our findings underscore the significance of controlling the hydrophobic surface of electrocatalysts as an effective means to enhance electrochemical performance in aqueous media.
Collapse
Affiliation(s)
- Yanbiao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqing Zheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Shi Z, Wu P, Xi H, You T, Gao Y, Yin P. Exploring the surface plasmon catalytic reactions mechanism by three-phase interface modification combining with in-situ EC-SERS methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123834. [PMID: 38198990 DOI: 10.1016/j.saa.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Local surface plasmon resonance (LSPR) is a novel catalytic technique that has emerged in recent years, especially in the catalysis of aromatic amine compounds. However, the response process and mechanism are still unclear in current study. In the current field of study, the response process and mechanism are still unclear. In this work, the gas-liquid-solid three-phase interface (GLSTI) was innovatively utilized in this study to validate the reaction mechanism by surface-enhanced Raman spectroscopy. P-Aminothiophenol (PATP) and P-Phenylenediamine (PDA) underwent a surface plasmon-catalyzed reaction by using a silver nano-dendrites substrate with strong SERS activity. The GLSTI significantly facilitates the occurrence of surface plasmon catalytic reactions, which can supply enough oxygen by providing three-phase points. In situ SERS and EC-SERS technologies were combined in this study for the explorations. Therefore, this work is dedicated to deepening the exploration and expanding into new directions in plasmon-induced catalytic reactions.
Collapse
Affiliation(s)
- Ziqian Shi
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Pengfei Wu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Hongyan Xi
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Tingting You
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Yukun Gao
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
8
|
Ellingsson V, Iqbal A, Skúlason E, Abghoui Y. Nitrogen Reduction Reaction to Ammonia on Transition Metal Carbide Catalysts. CHEMSUSCHEM 2023; 16:e202300947. [PMID: 37702376 DOI: 10.1002/cssc.202300947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
The development of a low-cost, energy-efficient, and environmentally friendly alternative to the currently utilized Haber-Bosch process to produce ammonia is of great importance. Ammonia is an essential chemical used in fertilizers and a promising high-density fuel source. The nitrogen reduction reaction (NRR) has been explored intensively as a potential avenue for ammonia production using water as proton source, but to this day a catalyst capable of producing this chemical at high Faradaic efficiency (FE) and commercial yield and rates has not been reported. Here, we investigate the activity of transition metal carbide (TMC) surfaces in the (100) facets of the rocksalt (RS) structure as potential catalysts for the NRR. In this study, we use density functional theory (DFT) to model reaction pathways, estimate stability, assess kinetic barriers, and compare adsorbate energies to determine the overall performance of each TMC surface. For pristine TMC surfaces (with no defects) we find that none of the studied TMCs possess both exergonic adsorption of nitrogen and the capability to selectively protonate nitrogen to form ammonia in the desired aqueous solution. ZrC, however, is shown to be a potential catalyst if used in a non-aqueous electrolyte. To circumvent the endergonic adsorption of nitrogen onto the surface, a carbon vacancy was introduced. This provides a well-defined high coordination active site on the surface. In the presence of a vacancy VC, NbC, and WC showed efficient nitrogen adsorption, selectivity towards ammonia, and a low overpotential (OP). NbC did, however, display an unfeasible kinetic barrier to nitrogen dissociation for ambient-condition purposes, and thus it is suggested for high tempearture/pressure ammonia synthesis. Both WC and VC in their RS (100) structure are promising materials for experimental investigations in aqueous electrolytes, and ZrC could potentially be interesting for non-aqueous electrolytic systems.
Collapse
Affiliation(s)
- Viktor Ellingsson
- Science Institute of the University of Iceland, 101, Reykjavik, Iceland
| | - Atef Iqbal
- Science Institute of the University of Iceland, 101, Reykjavik, Iceland
| | - Egill Skúlason
- Science Institute of the University of Iceland, 101, Reykjavik, Iceland
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 101, Reykjavik, Iceland
| | - Younes Abghoui
- Science Institute of the University of Iceland, 101, Reykjavik, Iceland
| |
Collapse
|
9
|
Tranchida G, Milazzo RG, Leonardi M, Scalese S, Farina RA, Lombardo S, Privitera SMS. Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2850. [PMID: 37947695 PMCID: PMC10647533 DOI: 10.3390/nano13212850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Ammonia (NH3) is widely used in various fields, and it is also considered a promising carbon free energy carrier, due to its high hydrogen content. The nitrogen reduction reaction (NRR), which converts nitrogen into ammonia by using protons from water as the hydrogen source, is receiving a lot of attention, since effective process optimization would make it possible to overcome the Haber-Bosch method. In this study, we used a solution-based approach to obtain functionalized porous Ni foam substrates with a small amount of gold (<0.1 mg cm-1). We investigated several deposition conditions and obtained different morphologies. The electrochemical performance of various catalysts on the hydrogen evolution reaction (HER) and NRR has been characterized. The ammonia production yield was determined by chronoamperometry experiments at several potentials, and the results showed a maximum ammonia yield rate of 20 µg h-1 mgcat-1 and a Faradaic efficiency of 5.22%. This study demonstrates the potential of gold-based catalysts for sustainable ammonia production and highlights the importance of optimizing deposition conditions to improve the selectivity toward HER.
Collapse
Affiliation(s)
- Giuseppe Tranchida
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| | - Rachela G. Milazzo
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| | - Marco Leonardi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| | - Roberta A. Farina
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| | - Salvatore Lombardo
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| | - Stefania M. S. Privitera
- Institute for Microelectronics and Microsystems, National Research Council (CNR-IMM), Strada VIII, 5, 95121 Catania, Italy
| |
Collapse
|
10
|
Li K, Shi Z, Wang L, Wang W, Liu Y, Cheng H, Yang Y, Zhang L. Efficient electrochemical NO reduction to NH 3 over metal-free g-C 3N 4 nanosheets and the role of interface microenvironment. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130890. [PMID: 36860065 DOI: 10.1016/j.jhazmat.2023.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The ever-increasing NO emission has caused severe environmental issues and adverse effects on human health. Electrocatalytic reduction is regarded as a win-win technology for NO treatment with value-added NH3 generation, but the process is mainly relied on the metal-containing electrocatalysts. Here, we developed metal-free g-C3N4 nanosheets (deposited on carbon paper, named as CNNS/CP) for NH3 synthesis from electrochemical NO reduction under ambient condition. The CNNS/CP electrode afforded excellent NH3 yield rate of 15.1 μmol h-1 cm-2 (2180.1 mg gcat-1 h-1) and Faradic efficiency (FE) of ∼41.5 % at - 0.8 and - 0.6 VRHE, respectively, which were superior to the block g-C3N4 particles and comparable to the most of metal-containing catalysts. Moreover, through adjusting the interface microenvironment of CNNS/CP electrode by hydrophobic treatment, the abundant gas-liquid-solid triphasic interface improved NO mass transfer and availability, which enhanced NH3 production and FE to about 30.7 μmol h-1 cm-2 (4424.2 mg gcat-1 h-1) and 45.6 % at potential of - 0.8 VRHE. This study opens a novel pathway to develop efficient metal-free electrocatalysts for NO electroreduction and highlights the importance of electrode interface microenvironment in electrocatalysis.
Collapse
Affiliation(s)
- Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhuocheng Shi
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Longqian Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - YangYang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Hanyun Cheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yang Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China; School of Life Science, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China.
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
11
|
Wu H, Singh-Morgan A, Qi K, Zeng Z, Mougel V, Voiry D. Electrocatalyst Microenvironment Engineering for Enhanced Product Selectivity in Carbon Dioxide and Nitrogen Reduction Reactions. ACS Catal 2023; 13:5375-5396. [PMID: 37123597 PMCID: PMC10127282 DOI: 10.1021/acscatal.3c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Indexed: 04/08/2023]
Abstract
Carbon and nitrogen fixation strategies are regarded as alternative routes to produce valuable chemicals used as energy carriers and fertilizers that are traditionally obtained from unsustainable and energy-intensive coal gasification (CO and CH4), Fischer-Tropsch (C2H4), and Haber-Bosch (NH3) processes. Recently, the electrocatalytic CO2 reduction reaction (CO2RR) and N2 reduction reaction (NRR) have received tremendous attention, with the merits of being both efficient strategies to store renewable electricity while providing alternative preparation routes to fossil-fuel-driven reactions. To date, the development of the CO2RR and NRR processes is primarily hindered by the competitive hydrogen evolution reaction (HER); however, the corresponding strategies for inhibiting this undesired side reaction are still quite limited. Considering such complex reactions involve three gas-liquid-solid phases and successive proton-coupled electron transfers, it appears meaningful to review the current strategies for improving product selectivity in light of their respective reaction mechanisms, kinetics, and thermodynamics. By examining the developments and understanding in catalyst design, electrolyte engineering, and three-phase interface modulation, we discuss three key strategies for improving product selectivity for the CO2RR and NRR: (i) targeting molecularly defined active sites, (ii) increasing the local reactant concentration at the active sites, and (iii) stabilizing and confining product intermediates.
Collapse
Affiliation(s)
- Huali Wu
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Amrita Singh-Morgan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Kun Qi
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| |
Collapse
|
12
|
Qi Y, Zhao S, Pang Y, Yang Y. Hydrophobic Nanoporous Silver with ZIF Encapsulation for Nitrogen Reduction Electrocatalysis. Molecules 2023; 28:molecules28062781. [PMID: 36985753 PMCID: PMC10051616 DOI: 10.3390/molecules28062781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Electrochemical nitrogen reduction reaction (ENRR) offers a sustainable alternative to the environmentally hazardous Haber-Bosch process for producing ammonia. However, it suffers from an unsatisfactory performance due to its limited active sites and competitive hydrogen evolution reaction. Herein, we design a hydrophobic oleylamine-modified zeolitic imidazolate framework-coated nanoporous silver composite structure (NPS@O-ZIF). The composite achieves a high ammonia yield of (41.3 ± 0.9) μg·h-1·cm-2 and great Faradaic efficiency of (31.7 ± 1.2)%, overcoming the performances of NPS@ZIF and traditional silver nanoparticles@O-ZIF. Our strategy affords more active sites and accessible channels for reactant species due to the porous structure of NPS cores and restrains the evolution of hydrogen by introducing the hydrophobic molecule coated on the ZIF surfaces. Hence, the design of the hydrophobic core-shell composite catalyst provides a valuably practical strategy for ENRR as well as other water-sensitive reactions.
Collapse
Affiliation(s)
- Yating Qi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Shulin Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yue Pang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yijie Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
13
|
Al-Yahmadi K, Kyaw HH, Myint MTZ, Al-Mamari R, Dobretsov S, Al-Abri M. Development of portable sensor for the detection of bacteria: effect of gold nanoparticle size, effective surface area, and interparticle spacing upon sensing interface. DISCOVER NANO 2023; 18:45. [PMID: 37382758 DOI: 10.1186/s11671-023-03826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 06/30/2023]
Abstract
In this study, systematic development of a portable sensor for the rapid detection of Escherichia coli (E. coli) and Exiguobacterium aurantiacum (E. aurantiacum) was reported. A conductive glass was utilized as a substrate and developed the electrode patterns on it. Trisodium citrate (TSC) and chitosan-stabilized gold nanoparticles (AuNPs) (CHI-AuNP-TSC) and chitosan-stabilized AuNPs (CHI-AuNP) were synthesized and utilized as a sensing interface. The morphology, crystallinity, optical properties, chemical structures, and surface properties of immobilized AuNPs on the sensing electrodes were investigated. The sensing performance of the fabricated sensor was evaluated by using an electrochemical method to observe the current changes in cyclic voltammetric responses. The CHI-AuNP-TSC electrode has higher sensitivity toward E. coli than CHI-AuNP with a limit of detection (LOD) of 1.07 CFU/mL. TSC in the AuNPs synthesis process played a vital role in the particle size, the interparticle spacing, the sensor's effective surface area, and the presence of CHI around AuNPs, thus enhancing the sensing performance. Moreover, post-analysis of the fabricated sensor surface exhibited the sensor stability and the interaction between bacteria and the sensor surface. The sensing results showed a promising potential for rapid detection using a portable sensor for various water and food-borne pathogenic diseases.
Collapse
Affiliation(s)
- Khadija Al-Yahmadi
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman
| | - Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, 123, Muscat, Oman
| | - Rahma Al-Mamari
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Sergey Dobretsov
- UNESCO Chair. Department of Marine Science and Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 34, 123, Muscat, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Al-Khoud, P.O. Box 33, 123, Muscat, Oman.
| |
Collapse
|
14
|
Gupta D, Kafle A, Kaur S, S Thomas T, Mandal D, Nagaiah TC. Selective Electrochemical Conversion of N 2 to NH 3 in Neutral Media Using B, N-Containing Carbon with a Nanotubular Morphology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4033-4043. [PMID: 36648019 DOI: 10.1021/acsami.2c18878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical dinitrogen reduction (NRR) has riveted substantial attention as a greener method to synthesize ammonia (NH3) under ambient conditions. Here, B, N-containing carbon catalysts with a discrete morphology were synthesized from the metal-organic framework-ionic liquid (MOF-IL) composite for NRR in a neutral electrolyte medium (pH = 7). Morphology-dependent activity is witnessed, wherein C-BN@600 with a nanotubular morphology is able to achieve a high NH3 yield rate of 204 μg h-1 mgcat-1 and an F.E. of 16.7% with a TOF value of 0.2 h-1 at -0.2 V vs RHE. Further, a rigorous protocol is put forward for true NH3 estimation by tracing/eliminating any source of contamination in catalysts, electrolytes, or gas supply via ultraviolet-visible (UV-vis) spectroscopy, gas-purification methods, and isotope labeling experiments. Density functional theory predicts BN to be the favorable active site for N2 adsorption with a reduced energy barrier in the first reduction step and sequential stabilization of the B-N bond by an adjacent carbon atom.
Collapse
Affiliation(s)
- Divyani Gupta
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Alankar Kafle
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Sukhjot Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Tino S Thomas
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Debaprasad Mandal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Tharamani C Nagaiah
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| |
Collapse
|
15
|
He X, Ling Z, Peng X, Yang X, Ma L, Lu S. Facile synthesis of Cu2SnS3 nanocrystals as an efficient electrocatalyst for the nitrogen reduction reaction. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
16
|
Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conversion Reactions. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Yan W, Xing Q, Guo O, Feng H, Liu H, Deshlahra P, Li X, Chen Y. A Combination of "Push Effect" Strategy with "Triple-Phase-Boundary Engineering" on Iron Porphyrin-Based MOFs: Enhanced Selectivity and Activity for Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50751-50761. [PMID: 36322477 DOI: 10.1021/acsami.2c12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, the "push effect" strategy combined with "triple-phase-boundary" (TPB) engineering was innovatively employed to target the single Fe-N4 sites in an iron porphyrin-based metal-organic framework, with axially coordinated 4-octylpyridine groups on Fe-N4 (named as PCN-224 (Fe)-1). The amphiphilic 4-octylpyridine groups donate sufficient electrons toward Fe-N4 by the Fe-N(pyridine) coordination bond and simultaneously provide effective TBP reactive sites by the hydrophobic octyl terminals, resulting in enhanced ORR activity of the PCN-224 (Fe)-1 in hydrophobic octyl terminals, with an E1/2 of 0.81 V and complete 4-electron selectivity. Furthermore, TPB engineering is utilized to construct the PCN-224 (Fe)-1-based Zn-air battery with a maximum power density of 98 mW cm-2, demonstrating great practical application potential for molecule-based ORR catalysts. Meanwhile, the "push effect" mechanism on ORR is revealed by electron paramagnetic resonance, in situ UV-vis spectroelectrochemical analysis, and density functional theory.
Collapse
Affiliation(s)
- Wei Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Qianli Xing
- Department of Materials Science and Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Ouyang Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Hao Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Heyuan Liu
- College of New Energy, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, P. R. China
| |
Collapse
|
18
|
Three-phase interface of SnO2 nanoparticles loaded on hydrophobic MoS2 enhance photoelectrochemical N2 reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Liu Y, Meng X, Zhao Z, Li K, Lin Y. Assembly of Hydrophobic ZIF-8 on CeO 2 Nanorods as High-Efficiency Catalyst for Electrocatalytic Nitrogen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2964. [PMID: 36080000 PMCID: PMC9458198 DOI: 10.3390/nano12172964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) can use renewable electricity to convert water and N2 into NH3 under normal temperature and pressure conditions. However, due to the competitiveness of the hydrogen evolution reaction (HER), the ammonia production rate (RNH3) and Faraday efficiency (FE) of NRR catalysts cannot meet the needs of large-scale industrialization. Herein, by assembling hydrophobic ZIF-8 on a cerium oxide (CeO2) nanorod, we designed an excellent electrocatalyst CeO2-ZIF-8 with intrinsic NRR activity. The hydrophobic ZIF-8 surface was conducive to the efficient three-phase contact point of N2 (gas), CeO2 (solid) and electrolyte (liquid). Therefore, N2 is concentrated and H+ is deconcentrated on the CeO2-ZIF-8 electrocatalyst surface, which improves NRR and suppresses HER and finally CeO2-ZIF-8 exhibits excellent NRR performance with an RNH3 of 2.12 μg h-1 cm-2 and FE of 8.41% at -0.50 V (vs. RHE). It is worth noting that CeO2-ZIF-8 showed excellent stability in the six-cycle test, and the RNH3 and FE variation were negligible. This study paves a route for inhibiting the competitive reaction to improve the NRR catalyst activity and may provide a new strategy for NRR catalyst design.
Collapse
Affiliation(s)
| | | | | | | | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
20
|
Kaiprathu A, Velayudham P, Teller H, Schechter A. Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Wang L, Chen Z, Zhang Y, Liu C, Yuan J, Liu Y, Ge W, Lin S, An Q, Feng Z. Synergistically active piezoelectrical H2O2 production composite film achieved from catalytically inert PVDF-HFP matrix and SiO2 fillers. Chem Asian J 2022; 17:e202200278. [PMID: 35596666 DOI: 10.1002/asia.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Indexed: 11/10/2022]
Abstract
Local and decentralized H 2 O 2 production via piezoelectrical process promise smart biological utilization as well as environmental benefits. However, stable, bio/environmental- safe, and easily applied H 2 O 2 generation materials are still lacking. Here we report a novel flexible H 2 O 2 generation polymeric film composed of catalytically inert PVDF-HFP (Poly(vinylidene fluoride-co-hexafluoropropylene)) matrix and SiO 2 nanoparticle fillers. The film is bio-/environmentally benign at resting states, but effectively produces H 2 O 2 upon ultrasonic motivation at a production rate of 492 μmol [[EQUATION]] in one hour. Experimental and simulation methods in combination indicate that the effective H 2 O 2 generation capabilities stem from the synergistic existence of piezoelectrical fields and the air-liquid-solid three-phase regions around the porous film. The chemical conversions are motivated by the adsorbed charges. The silicon hydroxyl groups properly stabilize the *OOH intermediate and facilitate the chemical conversions of 2e - ORR of ambient O 2 . We expect the report to inspire H 2 O 2 piezoelectrical generation materials and promote the novel production strategies of H 2 O 2 as well as piezoelectrical functional materials.
Collapse
Affiliation(s)
- Lingchao Wang
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Zhensheng Chen
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Yihe Zhang
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, CHINA
| | - Chao Liu
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Jinpeng Yuan
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Yulun Liu
- China University of Geosciences Beijing, School of Materials Science and Technology, 100083, Beijing, CHINA
| | - Weiyi Ge
- China University of Geosciences Beijing, School of Materials Science and Technology, 100083, Beijing, CHINA
| | - Sen Lin
- China University of Geosciences Beijing, School of Materials Science and Technology, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Qi An
- China University of Geosciences Beijing, School of materials sciences and engineering, 29th Xueyuan Road, 100083, Beijing, CHINA
| | - Zeguo Feng
- The First Medical Center of Chinese PLA General Hospital, Department of Pain, 100083, Beijing, CHINA
| |
Collapse
|
22
|
Guo Z, Wang T, Liu H, Qiu S, Zhang X, Xu Y, Langford SJ, Sun C. Defective 2D silicon phosphide monolayers for the nitrogen reduction reaction: a DFT study. NANOSCALE 2022; 14:5782-5793. [PMID: 35352728 DOI: 10.1039/d1nr08445c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electroreduction of N2 is a highly promising route for NH3 production. The lack of efficient catalysts that can activate and then reduce N2 into NH3 limits this as a pragmatic application. In this work, a 2D layered group IV-V material, silicon phosphide (SiP), is evaluated as a suitable substrate for the electrochemical nitrogen reduction reaction (ENRR). To capture N2, one phosphorus (P) defect was introduced on the plane of SiP. DFT calculations found that the defective SiP monolayer (D1-SiP, which is defined by the P-defect on SiP) exhibits enormous prospects towards the ENRR because of enhanced electron conductivity, good activation on N2, lower limiting potential (UL = -0.87 V) through the enzymatic pathway, smooth charge transfer between the catalyst and the reaction species, and robust thermal stability. Importantly, D1-SiP demonstrates the suppressed activities on producing of H2 and N2H4 side-products. This research demonstrates the potential of 2D metal-free Si-based catalysts for nitrogen fixation and further enriches the study of group IV-V materials for the ENRR.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523808, China.
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Tianyi Wang
- Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523808, China.
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Haikun Liu
- Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523808, China.
| | - Siyao Qiu
- Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaoli Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Xu
- Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523808, China.
| | - Steven J Langford
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
23
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Zou Z, Wu L, Yang F, Cao C, Meng Q, Luo J, Zhou W, Tong Z, Chen J, Chen S, Zhou S, Wang J, Deng S. Delicate Tuning of the Ni/Co Ratio in Bimetal Layered Double Hydroxides for Efficient N 2 Electroreduction. CHEMSUSCHEM 2022; 15:e202200127. [PMID: 35170239 DOI: 10.1002/cssc.202200127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Electroreduction of N2 to NH3 at ambient conditions using renewable electricity is promising, but developing efficient electrocatalysts is still challenging due to the inertness of N≡N bonds. Layer double hydroxides (LDHs) composed of first-row transition metals with empty d-orbitals are theoretically promising for N2 electroreduction (NRR) but rarely reported. Herein, hollow NiCo-LDH nanocages with different Ni/Co ratios were prepared, and their electronic structures and atomic arrangements were critical. The synergetic mechanisms of Ni and Co ions were revealed, and the optimized catalytic sites were proposed. Besides, in-situ Raman spectroscopy and 15 N2 isotopic labeling studies were applied to detect reaction intermediates and confirm the origin of NH3 . As a result, high NH3 yield of 52.8 μg h-1 mgcat -1 and faradaic efficiency of 11.5 % were obtained at -0.7 V, which are top-ranking among Co/Ni-based NRR electrocatalysts. This work elucidates the structure-activity relationship between LDHs and NRR and is instructive for rational design of LDH-based electrocatalysts.
Collapse
Affiliation(s)
- Zhi Zou
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Lei Wu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, 310058, P. R. China
| | - Fangqi Yang
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Chenliang Cao
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Qiangguo Meng
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Junhui Luo
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Weizhen Zhou
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Zhikun Tong
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Jingwen Chen
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Shixia Chen
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, 310058, P. R. China
| | - Jun Wang
- School of Resource Environmental and Chemical Engineering, Nanchang University, Jiangxi, Nanchang, 330031, P. R. China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, Arizona, 85287, USA
| |
Collapse
|
25
|
Wang J, Wei J, An C, Tang H, Deng Q, Li J. Electrocatalyst Design for Conversion of Energy Molecules: Electronic State Modulation and Mass Transport Regulation. Chem Commun (Camb) 2022; 58:10907-10924. [DOI: 10.1039/d2cc03630d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic conversions of energy molecules are involved in many energy conversion processes. Improving the activity of electrocatalyst is critical for increasing the efficiency of these energy conversion processes. However, the...
Collapse
|
26
|
Chen H, Wang Y, Deng G, Xu Z, Yang M, Huang Y, Peng Q, Li T, Feng Z. Enhanced electrocatalytic performance of TiO2 nanoparticles by Pd doping toward ammonia synthesis under ambient conditions. Chem Commun (Camb) 2022; 58:3214-3217. [DOI: 10.1039/d1cc06778h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The traditional Haber-Bosch (H-B) process in industry to produce NH3 leads to excessive CO2 emissions and a large amount of energy consumption. Ambient electrochemical N2 reduction is emerging as a...
Collapse
|
27
|
Chen H, Liang J, Dong K, Yue L, Li T, Luo Y, Feng Z, Li N, Hamdy MS, Alshehri AA, Wang Y, Sun X, Liu Q. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00140c] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic N2 reduction is a sustainable alternative to the Haber-Bosch process for ambient NH3 synthesis, but it needs efficient and stable catalysts. Herein, a hybrid of TiO2 and juncus effusus-derived...
Collapse
|
28
|
Yang M, Jin Z, Wang C, Cao X, Wang X, Ma H, Pang H, Tan L, Yang G. Fe Foam-Supported FeS 2-MoS 2 Electrocatalyst for N 2 Reduction under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55040-55050. [PMID: 34751553 DOI: 10.1021/acsami.1c16284] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly efficient catalysts with enough selectivity and stability are essential for electrochemical nitrogen reduction reaction (e-NRR) that has been considered as a green and sustainable route for synthesis of NH3. In this work, a series of three-dimensional (3D) porous iron foam (abbreviated as IF) self-supported FeS2-MoS2 bimetallic hybrid materials, denoted as FeS2-MoS2@IFx, x = 100, 200, 300, and 400, were designed and synthesized and then directly used as the electrode for the NRR. Interestingly, the IF serving as a slow-releasing iron source together with polyoxomolybdates (NH4)6Mo7O24·4H2O as a Mo source were sulfurized in the presence of thiourea to form self-supported FeS2-MoS2 on IF (abbreviated as FeS2-MoS2@IF200) as an efficient electrocatalyst. Further material characterizations of FeS2-MoS2@IF200 show that flower cluster-like FeS2-MoS2 grows on the 3D skeleton of IF, consisting of interconnected and staggered nanosheets with mesoporous structures. The unique 3D porous structure of FeS2-MoS2@IF together with synergy and interface interactions of bimetallic sulfides would make FeS2-MoS2@IF possess favorable electron transfer tunnels and expose abundant intrinsic active sites in the e-NRR. It is confirmed that synthesized FeS2-MoS2@IF200 shows a remarkable NH3 production rate of 7.1 ×10-10 mol s-1 cm-2 at -0.5 V versus the reversible hydrogen electrode (vs RHE) and an optimal faradaic efficiency of 4.6% at -0.3 V (vs RHE) with outstanding electrochemical and structural stability.
Collapse
Affiliation(s)
- Mengle Yang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Zhongxin Jin
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Key Laboratory of Oilfield Applied Chemistry and Technology, College of Chemical Engineering, Daqing Normal University, Daqing 163712, P. R. China
| | - Chenglong Wang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xixian Cao
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Huiyuan Ma
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Haijun Pang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Lichao Tan
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| |
Collapse
|
29
|
Guo Z, Jasin Arachchige L, Qiu S, Zhang X, Xu Y, Langford SJ, Sun C. p-Block element-doped silicon nanowires for nitrogen reduction reaction: a DFT study. NANOSCALE 2021; 13:14935-14944. [PMID: 34533164 DOI: 10.1039/d1nr03448k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic nitrogen reduction reaction (NRR) is a promising, green route to chemically reducing N2 into NH3 under ambient conditions, correlating to the N2 fixation process of nitrogenase enzymes. To achieve high-yield NRR with sunlight as the driving force, high-performance photocatalysts are essential. One-dimensional silicon nanowires (1D SiNWs) are a great photoelectric candidate, but inactive for NRR due to their inability to capture N2. In this study, we proposed SiNWs doped by p-block elements (B, C, P) to tune the affinity to N2 and demonstrated that two-coordinated boron (B2C) offers an ultra-low overpotential (η) of 0.34 V to catalyze full NRR, which is even much lower than that of flat benchmark Ru(0001) catalysts (η = 0.92 V). Moreover, aspects including suppressed hydrogen evolution reaction (HER), high-spin ground state of the B2C site, and decreased band gap after B-doping ensure the high selectivity and photocatalytic activity. Finally, this work not only shows the potential use of metal-free p-block element-based catalysts, but also would facilitate the development of 1D nanomaterials towards efficient reduction of N2 into NH3.
Collapse
Affiliation(s)
- Zhongyuan Guo
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Lakshitha Jasin Arachchige
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Siyao Qiu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaoli Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Xu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Steven J Langford
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| |
Collapse
|
30
|
Zhao X, Hu G, Chen GF, Zhang H, Zhang S, Wang H. Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007650. [PMID: 34197001 DOI: 10.1002/adma.202007650] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Indexed: 05/09/2023]
Abstract
The electrochemical method of combining N2 and H2 O to produce ammonia (i.e., the electrochemical nitrogen reduction reaction [E-NRR]) continues to draw attention as it is both environmentally friendly and well suited for a progressively distributed farm economy. Despite the multitude of recent works on the E-NRR, further progress in this field faces a bottleneck. On the one hand, despite the extensive exploration and trial-and-error evaluation of E-NRR catalysts, no study has stood out to become the stage protagonist. On the other hand, the current level of ammonia production (microgram-scale) is an almost insurmountable obstacle for its qualitative and quantitative determination, hindering the discrimination between true activity and contamination. Herein i) the popular theory and mechanism of the NRR are introduced; ii) a comprehensive summary of the recent progress in the field of the E-NRR and related catalysts is provided; iii) the operational procedures of the E-NRR are addressed, including the acquisition of key metrics, the challenges faced, and the most suitable solutions; iv) the guiding principles and standardized recommendations for the E-NRR are emphasized and future research directions and prospects are provided.
Collapse
Affiliation(s)
- Xue Zhao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Gao-Feng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Haibo Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
31
|
2D Vanadium Carbide (MXene) for Electrochemical Synthesis of Ammonia Under Ambient Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03589-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
32
|
Niu Y, Zhang C, Wang Y, Fang D, Zhang L, Wang C. Confining Chainmail-Bearing Ni Nanoparticles in N-doped Carbon Nanotubes for Robust and Efficient Electroreduction of CO 2. CHEMSUSCHEM 2021; 14:1140-1154. [PMID: 33464697 DOI: 10.1002/cssc.202002596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
It still remains challenging to simultaneously achieve high stability, selectivity, and activity in CO2 reduction. Herein, a dual chainmail-bearing nickel-based catalyst (Ni@NC@NCNT) was fabricated via a solvothermal-evaporation-calcination approach. In situ encapsulated N-doped carbon layers (NCs) and nanotubes (NCNTs) gave a dual protection to the metallic core. The confined space well maintained the local alkaline pH value and suppressed hydrogen evolution. Large surface area and abundant pyridinic N and Niδ+ sites ensured high CO2 adsorption capacity and strength. Benefitting from these, it delivered a CO faradaic efficiency of 94.1 % and current density of 48.0 mA cm-2 at -0.75 and -1.10 V, respectively. Moreover, the performance remained unchanged after continuous electrolysis for 43 h, far exceeding Ni@NC with single chainmail, Ni@NC/NCNT with Ni@NC sitting on the walls of NCNT, bare NCNT and most state-of-the-art catalysts, demonstrating structural superiority of Ni@NC@NCNT. This work sheds light on designing unique architectures to improve electrochemical performances.
Collapse
Affiliation(s)
- Yongjian Niu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Chunhua Zhang
- Unilever Co., Ltd., 88# Jinxiu Avenue, Economy & Technology Dev. Zone, Hefei, 230000, P. R. China
| | - Yuanyuan Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Dong Fang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Linlin Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Cheng Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
33
|
Fang B, Yao J, Zhang X, Ma L, Ye Y, Tang J, Zou G, Zhang J, Jiang L, Sun Y. A large scaled-up monocrystalline 3R MoS 2 electrocatalyst for efficient nitrogen reduction reactions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05264g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Large-scale 3R MoS2 was shown to be an efficient electrocatalyst for the NRR, and the NRR performance can be enhanced via improving the crystallinity of MoS2 due to decreased resistance.
Collapse
|