1
|
Zaccariotto GDC, Bistaffa MJ, Zapata AMM, Rodero C, Coelho F, Quitiba JV, Lima L, Sterman R, Cardoso VDO, Zucolotto V. Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation. ACS NANO 2025; 19:16204-16223. [PMID: 40202241 PMCID: PMC12060653 DOI: 10.1021/acsnano.4c15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Cancer immunotherapy has transformed the landscape of oncological treatment by employing various strategies to teach the immune system to eliminate tumors. Among these, cancer nanovaccines are an emerging strategy that utilizes nanotechnology to enhance immune activation in response to tumor antigens. This review addresses the principles behind the different technologies in this field aimed at generating a robust and effective immune response. The diversity of strategies adopted for the design of nanovaccines is discussed, including the types of active agents, nanocarriers, their functionalizations, and the incorporation of adjuvants. Furthermore, strategies to optimize nanoparticle formulations to enhance the antigen presentation, target immune cells, and organs and promote strong and durable antitumor responses are explored. Finally, we analyze the current state of clinical application, highlighting ongoing clinical trials and the future potential of cancer nanovaccines. The insights presented in this review aim to guide future research and development efforts in the field, contributing to the advancement of more effective and targeted nanovaccines in the fight against cancer.
Collapse
Affiliation(s)
- Gabriel de Camargo Zaccariotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Angelica Maria Mazuera Zapata
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Camila Rodero
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Fernanda Coelho
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - João Victor
Brandão Quitiba
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Lorena Lima
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Raquel Sterman
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| |
Collapse
|
2
|
Xu Y, Wang B, Huang Y, Liao J, Wu C, Zhou C, Kang Z, Jiang S, Wu B, Zhang D, Xu R, Liu X, Wang F. Targeting Antigen-Presenting Cells to Enhance the Tumor-Spleen Immunity Cycle through Liposome-Neoantigen Vaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500021. [PMID: 40125791 PMCID: PMC12097013 DOI: 10.1002/advs.202500021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Effective immune responses in both the spleen and the tumor microenvironment are crucial for cancer immunotherapy. However, delivery of neoantigen peptide vaccines to antigen-presenting cells (APCs) at these sites remains challenging. In this study, LNPsD18, a cationic liposomal formulation that targets and enhances APC uptake at both sites without modifying the targeting ligands is developed. By co-delivering tumor-specific neoantigens and a cholesterol-coupled toll-like receptor 9 (TLR9) agonist within LNP-vaxD18, an approximately 60-fold increase in dendritic cell uptake compared to neoantigen-adjuvant mixtures is achieved. Intravenous administration of the liposome-neoantigen peptide vaccine targets both the spleen and the tumor, boosting splenic DC activation, increasing M1-type tumor-associated macrophages, and elevating tumor cytokine levels. This reshapes the tumor microenvironment, enhancing IFN-γ-producing CD8+ T cells and TCF1+CD8+ T cells within tumors. These outcomes significantly inhibit established tumor growth compared to nontargeted lipid-based nanovaccine formulations, resulting in improved survival in orthotopic hepatocellular carcinoma and colorectal cancer models. The findings highlight the importance of targeting APCs in both the spleen and tumors to optimize the therapeutic efficacy of liposome-neoantigen vaccines in cancer treatment.
Collapse
Affiliation(s)
- Yu Xu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhou510060P. R. China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Fujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Yue Huang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhou510060P. R. China
| | - JianPing Liao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
| | - Chenyi Wu
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhou510060P. R. China
| | - Chenxi Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Zishi Kang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Shiyang Jiang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Bing‐Chen Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Da Zhang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhou510060P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Ruihua Xu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhou510060P. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen UniversityGuangzhou510060P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Feng Wang
- Department of Medical OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen UniversityGuangzhou510060P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal CancerChinese Academy of Medical SciencesGuangzhou510060P. R. China
| |
Collapse
|
3
|
Lin S, Zhang Q, Bai S, Yang L, Qin G, Wang L, Wang W, Cheng C, Zhang D, Lu C, Yuan J, Li J, Yang H, Gu X, Han X. Beyond species and spatial boundaries: Enabling long-distance gene silencing in plants via guanidinium-siRNA nanoparticles. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1165-1177. [PMID: 39918074 PMCID: PMC11933838 DOI: 10.1111/pbi.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 03/26/2025]
Abstract
RNA interference (RNAi) has been widely used in agriculture. However, it is well accepted that common methods of plant RNAi are species-dependent and lack systematic efficiency. This study designed a thiolated siRNA nanoparticle, guanidinium (Gu+)-containing disulfide assembled siRNA (Gu+-siRNA), demonstrating remarkable species independence and efficient systemic gene silencing across different plant species. Our results indicate that this approach effectively utilizes the plant vascular system to deliver siRNA, enabling long-distance gene silencing across both monocot and dicot plants, such as rice and Arabidopsis. By applying this method, we successfully targeted and silenced key genes like STM, WER, MYB23, GD1, EIL1, and EIL2, which regulate plant development and enhance salt tolerance. This delivery system significantly expands the application of RNAi technology across different plants, serving as a valuable tool for advancing agricultural biotechnology, enhancing crop resistance, and improving agricultural productivity, while aligning with global goals for sustainable food production and crop improvement.
Collapse
Affiliation(s)
- Shujin Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityFujianChina
| | - Qian Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Artemisinin Research Center, the Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Shiyan Bai
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | - Liwen Yang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Guannan Qin
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liyuan Wang
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | - Wenbin Wang
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | - Cui Cheng
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | - Da Zhang
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | - Chunhua Lu
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life SciencesXiamen UniversityFujianChina
| | - Jingying Li
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| | | | - Xiaofeng Gu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiao Han
- College of Biological Science and EngineeringFuzhou UniversityFuzhouChina
| |
Collapse
|
4
|
Zheng Y, Wang B, Cai Z, Lai Z, Yu H, Wu M, Liu X, Zhang D. Tailoring nanovectors for optimal neoantigen vaccine efficacy. J Mater Chem B 2025; 13:4045-4058. [PMID: 40042164 DOI: 10.1039/d4tb02547d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The primary objective of neoantigen vaccines is to elicit a robust anti-tumor immune response by generating neoantigen-specific T cells that can eradicate tumor cells. Despite substantial advancements in personalized neoantigen prediction using next-generation sequencing, machine learning, and mass spectrometry, challenges remain in efficiently expanding neoantigen-specific T cell populations in vivo. This challenge impedes the widespread clinical application of neoantigen vaccines. Nanovector-based neoantigen delivery systems have emerged as a promising solutions to this challenge. These nanovectors offer several advantages, such as enhanced stability, targeted intracellular delivery, sustained release, and improved antigen-presenting cell (APC) activation. Notably, they effectively deliver various neoantigen vaccine formulations (DC cell-based, synthetic long peptide (SLP)-based or DNA/mRNA-based) to APCs or T cells, thereby activating both CD4+ T and CD8+ T cells. This ultimately induces a specific anti-tumor immune response. This review focuses on recent innovations in neoantigen vaccine delivery vectors. We aim to identify optimal design parameters for vectors tailored to different neoantigen vaccine types, with an emphasis on enhancing the tumor microenvironment and stimulating the production of neoantigen-specific cytotoxic T cells. By maximizing the potential of these delivery systems, we aim to accelerate the clinical translation of neoantigen nanovaccines and advance cancer immunotherapy.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Bing Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zisen Lai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Haijun Yu
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
- Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
5
|
Singh P, Khatib MN, R R, Kaur M, Srivastava M, Barwal A, Rajput GVS, Rajput P, Syed R, Sharma G, Kumar S, Shabil M, Pandey S, Brar M, Bushi G, Mehta R, Sah S, Goh KW, Satapathy P, Gaidhane AM, Samal SK. Advancements and challenges in personalized neoantigen-based cancer vaccines. Oncol Rev 2025; 19:1541326. [PMID: 40160263 PMCID: PMC11949952 DOI: 10.3389/or.2025.1541326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Advancements in personalized neoantigen-based cancer vaccines are ushering in a new era in oncology, targeting unique genetic alterations within tumors to enhance treatment precision and efficacy. Neoantigens, specific to cancer cells and absent in normal tissues, are at the heart of these vaccines, promising to direct the immune system specifically against the tumor, thereby maximizing therapeutic efficacy while minimizing side effects. The identification of neoantigens through genomic and proteomic technologies is central to developing these vaccines, allowing for the precise mapping of a tumor's mutational landscape. Despite advancements, accurately predicting which neoantigens will elicit strong immune responses remains challenging due to tumor variability and the complexity of immune system interactions. This necessitates further refinement of bioinformatics tools and predictive models. Moreover, the efficacy of these vaccines heavily depends on innovative delivery methods that enhance neoantigen presentation to the immune system. Techniques like encapsulating neoantigens in lipid nanoparticles and using viral vectors are critical for improving vaccine stability and delivery. Additionally, these vaccines contribute towards achieving Sustainable Development Goal 3.8, promoting universal health coverage by advancing access to safe and effective cancer treatments. This review delves into the potential of neoantigen-based vaccines to transform cancer treatment, examining both revolutionary advancements and the ongoing challenges they face.
Collapse
Affiliation(s)
- Parminder Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Mohali, Punjab, India
| | - G. V. Siva Rajput
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Rukshar Syed
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Gajendra Sharma
- New Delhi Institute of Management, Tughlakabad Institutional Area, New Delhi, India
| | - Sunil Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Muhammed Shabil
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Sakshi Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| | - Manvinder Brar
- Chitkara Centre for Research and Development, Chitkara University, Solan, Himachal Pradesh, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rachana Mehta
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Medical College Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed-to-be-University), Pimpri, Pune, Maharashtra, India
- Department of Medicine, Korea Universtiy, Seoul, Republic of Korea
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Prakasini Satapathy
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Abhay M. Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Chen C, Xu Y, Meng H, Bao H, Hu Y, Li C, Xia D. Nano-Oncologic Vaccine for Boosting Cancer Immunotherapy: The Horizons in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:122. [PMID: 39852737 PMCID: PMC11767563 DOI: 10.3390/nano15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation and promoting robust antitumor responses. By improving antigen presentation and localizing immune activation within the tumor microenvironment, nano-oncologic vaccines can significantly increase the efficacy of cancer immunotherapy, particularly when combined with other treatment modalities. This review highlights the mechanisms through which nano-oncologic vaccines operate, their potential to overcome existing limitations in cancer treatment, and ongoing advancements in design. Additionally, it discusses the targeted delivery approach, such as EPR effects, pH response, ultrasonic response, and magnetic response. The combination therapy effects with photothermal therapy, radiotherapy, or immune checkpoint inhibitors are also discussed. Overall, nano-oncologic vaccines hold great promise for changing the landscape of cancer treatment and advancing personalized medicine, paving the way for more effective therapeutic strategies tailored to individual patient needs.
Collapse
Affiliation(s)
- Chao Chen
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| | - Yue Xu
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| | - Hui Meng
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| | - Hongyi Bao
- School of Medicine, Nantong University, Nantong 226019, China;
| | - Yong Hu
- Nanjing University (Suzhou) High-Tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China;
| | - Chunjian Li
- Center of Forecasting and Analysis, Nantong University, Nantong 226019, China
| | - Donglin Xia
- Institute for Applied Research in Public Health, School of Public Health, Nantong University, Nantong 226019, China; (C.C.); (Y.X.); (H.M.)
| |
Collapse
|
7
|
Ren B, Yan S, Li Z, Huang Y, Cai H, Yang J, Fan Q, Chen C, Que F, Wu G, Huang L, Zhou R, Zhu J, Yan C, Liu G, Shen Z, Ning S. A Turbo-Charging System-Like Contrast Agent for MRI-Guided STING Pathway-Activated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410432. [PMID: 39488791 PMCID: PMC11714149 DOI: 10.1002/advs.202410432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Indexed: 11/04/2024]
Abstract
To overcome the problems of Gd-based contrast agents (GBCAs) (nephrotoxicity and brain deposition) and stimulator of interferon genes (STING) agonists (poor stability, low delivery efficiency, and potential toxicity), in this study, a Turbo-charging system-like GBCA is designed and constructed for magnetic resonance imaging (MRI) guided STING pathway-activated cancer immunotherapy. Poly(acrylic acid) (PAA) is used to coordinate with Gd3+, forming a Gd/PAA macrochelate. Both Gd/PAA macrochelate and SR717 are conjugated to cystamine (CA) to obtain SR717-CA@Gd/PAA self-assembled nanoparticles (SAN), which are termed as Turbo S because of its similarity with the Turbo-charging system of cars. After accumulation in tumors and internalization in tumor cells, the disulfide linkage in Turbo S undergoes a cleavage process catalyzed by glutathione (GSH), leading to the release of Gd/PAA and SR717. The released Gd/PAA gain a high r1 value (17.11 mM-1 s-1 at 7.0 T; 57.81 mM-1 s-1 at 3.0 T), indicating its strong T1 imaging capability. Turbo S with a low dosage of SR717 (8.9 mg kg-1) achieved a higher tumor immunotherapeutic efficacy than free SR717 with a high dosage (30 mg kg-1). The excellent delivery efficiency, high tumor treatment efficacy, and superior biosafety demonstrate that the Turbo S can be used as a promising candidate for tumor immunotherapy.
Collapse
Affiliation(s)
- Bin Ren
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Sihua Yan
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| | - Zongheng Li
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Ya Huang
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Haobin Cai
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Jing Yang
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Qingdeng Fan
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Chunmei Chen
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Fanchao Que
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Guochao Wu
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Lin Huang
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Ruilong Zhou
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Jiaoyang Zhu
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Chenggong Yan
- Medical Imaging CenterNanfang HospitalSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Gang Liu
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamenFujian361102China
| | - Zheyu Shen
- School of Biomedical EngineeringSouthern Medical University1023 Shatai South RoadGuangzhouGuangdong510515China
| | - Shipeng Ning
- Department of Breast SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000China
| |
Collapse
|
8
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Chen Q, Liu Y, Chen Q, Li M, Xu L, Lin B, Tan Y, Liu Z. DNA Nanostructures: Advancing Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405231. [PMID: 39308253 DOI: 10.1002/smll.202405231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| |
Collapse
|
10
|
Zhou Y, Pang L, Ding T, Chen K, Liu J, Wu M, Wang W, Man K. Precise In Situ Delivery of a Photo-Enhanceable Inflammasome-Activating Nanovaccine Activates Anticancer Immunity. Cancer Res 2024; 84:3834-3847. [PMID: 39288074 PMCID: PMC11565167 DOI: 10.1158/0008-5472.can-24-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/04/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
A variety of state-of-the-art nanovaccines (NV) combined with immunotherapies have recently been developed to treat malignant tumors, showing promising results. However, immunosuppression in the tumor microenvironment (TME) restrains cytotoxic T-cell infiltration and limits the efficacy of immunotherapies in solid tumors. Therefore, tactics for enhancing antigen cross-presentation and reshaping the TME need to be explored to enhance the activity of NVs. Here, we developed photo-enhanceable inflammasome-activating NVs (PIN) to achieve precise in situ delivery of a tumor antigen and a hydrophobic small molecule activating the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 inflammasome (NLRP3) pathway. Near-infrared light irradiation promoted PIN accumulation in tumor sites through photo-triggered charge reversal of the nanocarrier. Systematic PIN administration facilitated intratumoral NLRP3 inflammasome activation and antigen cross-presentation in antigen-presenting cells upon light irradiation at tumor sites. Furthermore, PIN treatment triggered immune responses by promoting the production of proinflammatory cytokines and activating antitumor immunity without significant systematic toxicity. Importantly, the PIN enhanced the efficacy of immune checkpoint blockade and supported the establishment of long-term immune memory in mouse models of melanoma and hepatocellular carcinoma. Collectively, this study reports a safe and efficient photoresponsive system for codelivery of antigens and immune modulators into tumor tissues, with promising therapeutic potential. Significance: The development of a photoresponsive nanovaccine with spatiotemporal controllability enables robust tumor microenvironment modulation and enhances the efficacy of immune checkpoint blockade, providing an effective immunotherapeutic strategy for cancer treatment. See related commentary by Zhen and Chen, p. 3709.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Dr. Li Dak-Sum Research Centre, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Pang
- Department of Pancreato-Biliary Surgery and Liver Transplantation Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine and HKU-SZH, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Tao Ding
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine and HKU-SZH, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Kang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Dr. Li Dak-Sum Research Centre, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinzhao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Dr. Li Dak-Sum Research Centre, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Meicen Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Dr. Li Dak-Sum Research Centre, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Dr. Li Dak-Sum Research Centre, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine and HKU-SZH, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Liu H, Zhang T, Zheng M, Xie Z. Tumor associated antigens combined with carbon dots for inducing durable antitumor immunity. J Colloid Interface Sci 2024; 673:594-606. [PMID: 38897061 DOI: 10.1016/j.jcis.2024.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Although therapeutic nanovaccines have made a mark in cancer immunotherapy, the shortcomings such as poor homing ability of lymph nodes (LNs), low antigen presentation efficiency and low antitumor efficacy have hindered their clinical transformation. Accordingly, we prepared advanced nanovaccines (CMB and CMC) by integrating carbon dots (CDs) with tumor-associated antigens (B16F10 and CT26). These nanovaccines could forwardly target tumors harbouring LNs, induce strong immunogenicity for activating cytotoxic T cells (CTLs), thereby readily eliminating tumor cells and suppressing primary/distal tumor growth. This work provides a promising therapeutic vaccination strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Tao Zhang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.
| |
Collapse
|
12
|
Hou W, Mao W, Sun J, Liu Z, Shen W, Lee HK, Tang S. Targeting Hydrogel for Intelligent Recognition and Spatiotemporal Control in Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404172. [PMID: 38874481 PMCID: PMC11321622 DOI: 10.1002/advs.202404172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Smart drug platforms based on spatiotemporally controlled release and integration of tumor imaging are expected to overcome the inefficiency and uncertainty of traditional theranostic modes. In this study, a composite consisting of a thermosensitive hydrogel (polyvinyl alcohol-carboxylic acid hydrogel (PCF)) and a multifunctional nanoparticle (Fe3O4@Au/Mn(Zn)-4-carboxyphenyl porphyrin/polydopamine (FAMxP)) is developed to combine tumor immunogenic cell death (ICD)/immune checkpoint blockade (ICB) therapy under the guidance of magnetic resonance imaging (MRI) and fluorescence imaging (FI). It can not only further recognize the target cells through the folate receptor of tumor cells, but also produce thermal dissolution after exposure to near-infrared light to slowly release FAMxP in situ, thereby prolonging the treatment time and avoiding tumor recurrence. As FAMxP entered the tumor cells, it released FAMx in a pH-dependent manner. Chemodynamic, photothermal and photodynamic therapy can cause significant ICD in cancer cells. ICB can thus be further enhanced by injecting anti-programmed cell death ligand 1, improving the effectiveness of tumor treatment. The developed PCF-FAMxP composite hydrogel may represent an updated drug design approach with simple compositions for cooperative MRI/FI-guided targeted therapeutic pathways for tumors.
Collapse
Affiliation(s)
- Weilin Hou
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| | - Wei Mao
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
- Central‐Southern Safety and Environmental Technology Institute Co. Ltd.Wuhan430071P. R. China
| | - Jun Sun
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
| | - Zhiqiang Liu
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| | - Wei Shen
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Sheng Tang
- School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangJiangsu212003P. R. China
| |
Collapse
|
13
|
Xiong M, Zhang Y, Zhang H, Shao Q, Hu Q, Ma J, Wan Y, Guo L, Wan X, Sun H, Yuan Z, Wan H. A Tumor Environment-Activated Photosensitized Biomimetic Nanoplatform for Precise Photodynamic Immunotherapy of Colon Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402465. [PMID: 38728587 PMCID: PMC11267356 DOI: 10.1002/advs.202402465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 05/12/2024]
Abstract
Aggressive nature of colon cancer and current imprecise therapeutic scenarios simulate the development of precise and effective treatment strategies. To achieve this, a tumor environment-activated photosensitized biomimetic nanoplatform (PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM) is fabricated by encapsulating metal-organic framework loaded with developed photosensitizer PEG2000-SiNcTI-Ph and immunoadjuvant CpG oligodeoxynucleotide within fusion cell membrane expressing programmed death protein 1 (PD-1) and cluster of differentiation 47 (CD47). By stumbling across, systematic evaluation, and deciphering with quantum chemical calculations, a unique attribute of tumor environment (low pH plus high concentrations of adenosine 5'-triphosphate (ATP))-activated photodynamic effect sensitized by long-wavelength photons is validated for PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM, advancing the precision of cancer therapy. Moreover, PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM evades immune surveillance to target CT26 colon tumors in mice mediated by CD47/signal regulatory proteins α (SIRPα) interaction and PD-1/programmed death ligand 1 (PD-L1) interaction, respectively. Tumor environment-activated photodynamic therapy realized by PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM induces immunogenic cell death (ICD) to elicit anti-tumor immune response, which is empowered by enhanced dendritic cells (DC) uptake of CpG and PD-L1 blockade contributed by the nanoplatform. The photodynamic immunotherapy efficiently combats primary and distant CT26 tumors, and additionally generates immune memory to inhibit tumor recurrence and metastasis. The nanoplatform developed here provides insights for the development of precise cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mengmeng Xiong
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Ying Zhang
- State Key Laboratory of Food Science and ResourcesNanchang UniversityNanchang330047P. R. China
| | - Huan Zhang
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Qiaoqiao Shao
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Qifan Hu
- Postdoctoral Innovation Practice BaseThe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006P. R. China
| | - Junjie Ma
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Yiqun Wan
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Lan Guo
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Xin Wan
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241P. R. China
| | - Zhongyi Yuan
- School of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031P. R. China
| | - Hao Wan
- State Key Laboratory of Food Science and ResourcesNanchang UniversityNanchang330047P. R. China
| |
Collapse
|
14
|
Zhang Y, Jiang L, Huang S, Lian C, Liang H, Xing Y, Liu J, Tian X, Liu Z, Wang R, An Y, Lu F, Pan Y, Han W, Li Z, Yin F. Sulfonium-Stapled Peptides-Based Neoantigen Delivery System for Personalized Tumor Immunotherapy and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307754. [PMID: 38605600 PMCID: PMC11200081 DOI: 10.1002/advs.202307754] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Yaping Zhang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Siyong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Huiting Liang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Yun Xing
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Jianbo Liu
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Xiaojing Tian
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Zhihong Liu
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Rui Wang
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Yuhao An
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Youdong Pan
- NeoCura Bio‐Medical Technology Co. Ltd.Shenzhen518055P. R. China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Zigang Li
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhen518055P. R. China
| | - Feng Yin
- Pingshan Translational Medicine CenterShenzhen Bay LaboratoryShenzhen518055P. R. China
| |
Collapse
|
15
|
Jose J, M N V, R G B, Jose AS, Jubin J. The Intellectual Landscape of Nanovaccines: A Bibliometric Perspective on Scientific Progress and Future Directions. Cureus 2024; 16:e60131. [PMID: 38868255 PMCID: PMC11167401 DOI: 10.7759/cureus.60131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
This bibliometric study provides a comprehensive analysis of the burgeoning field of nanovaccine research, leveraging data sourced from Scopus and employing the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart for the meticulous screening, inclusion, and exclusion of relevant studies. Utilizing sophisticated bibliometric tools, such as Biblioshiny and CiteSpace, we dissected the expansive literature to unearth critical insights into the annual scientific output, identifying key contributors and pivotal publications that have shaped the domain. The analysis delineates the most influential authors, sources, and globally cited documents, offering a macroscopic view of the field's intellectual structure and growth trajectory. Trend topics and thematic mapping underscored the evolution of research foci, from fundamental immunological mechanisms to cutting-edge nanomaterial applications. Factorial analysis and keyword co-occurrence networks revealed the intricate associations and thematic concentrations within the literature. The study's robust methodology also pinpointed the keywords exhibiting the strongest citation bursts, signifying emergent areas of intense academic interest. Networks of cited authors illuminated collaborative patterns among scholars, while timeline network visualizations of country collaborations depicted the global interplay in nanovaccine development. Crucially, this study identified notable research gaps and practical implications, suggesting directions for future investigation and highlighting the translational potential of nanovaccines in public health and personalized medicine. This bibliometric investigation not only maps the current landscape but also charts a course for the trajectory of nanovaccine research, emphasizing its role as a cornerstone of innovative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Jobin Jose
- Library, Marian College Kuttikkanam (Autonomous), Kuttikkanam, IND
| | - Vinoj M N
- Physics, St. Peter's College, Kolenchery, Kolenchery, IND
| | - Bindu R G
- Physics, Nair Service Society (NSS) College, Nilamel, Kollam, IND
| | | | - Jacob Jubin
- Library, St. Thomas College, Palai (Autonomous), Palai, IND
| |
Collapse
|
16
|
Sun W, Xie S, Liu SF, Hu X, Xing D. Evolving Tumor Characteristics and Smart Nanodrugs for Tumor Immunotherapy. Int J Nanomedicine 2024; 19:3919-3942. [PMID: 38708176 PMCID: PMC11070166 DOI: 10.2147/ijn.s453265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Typical physiological characteristics of tumors, such as weak acidity, low oxygen content, and upregulation of certain enzymes in the tumor microenvironment (TME), provide survival advantages when exposed to targeted attacks by drugs and responsive nanomedicines. Consequently, cancer treatment has significantly progressed in recent years. However, the evolution and adaptation of tumor characteristics still pose many challenges for current treatment methods. Therefore, efficient and precise cancer treatments require an understanding of the heterogeneity degree of various factors in cancer cells during tumor evolution to exploit the typical TME characteristics and manage the mutation process. The highly heterogeneous tumor and infiltrating stromal cells, immune cells, and extracellular components collectively form a unique TME, which plays a crucial role in tumor malignancy, including proliferation, invasion, metastasis, and immune escape. Therefore, the development of new treatment methods that can adapt to the evolutionary characteristics of tumors has become an intense focus in current cancer treatment research. This paper explores the latest understanding of cancer evolution, focusing on how tumors use new antigens to shape their "new faces"; how immune system cells, such as cytotoxic T cells, regulatory T cells, macrophages, and natural killer cells, help tumors become "invisible", that is, immune escape; whether the diverse cancer-associated fibroblasts provide support and coordination for tumors; and whether it is possible to attack tumors in reverse. This paper discusses the limitations of targeted therapy driven by tumor evolution factors and explores future strategies and the potential of intelligent nanomedicines, including the systematic coordination of tumor evolution factors and adaptive methods, to meet this therapeutic challenge.
Collapse
Affiliation(s)
- Wenshe Sun
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Shaowei Xie
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People’s Republic of China
| | - Shi Feng Liu
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xiaokun Hu
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao, 266071, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
17
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Yang J, Xiong W, Huang L, Li Z, Fan Q, Hu F, Duan X, Fan J, Li B, Feng J, Xu Y, Chen X, Shen Z. A mesoporous superparamagnetic iron oxide nanoparticle as a generic drug delivery system for tumor ferroptosis therapy. J Nanobiotechnology 2024; 22:204. [PMID: 38658948 PMCID: PMC11044424 DOI: 10.1186/s12951-024-02457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
As a famous drug delivery system (DDS), mesoporous organosilica nanoparticles (MON) are degraded slowly in vivo and the degraded components are not useful for cell nutrition or cancer theranostics, and superparamagnetic iron oxide nanoparticles (SPION) are not mesoporous with low drug loading content (DLC). To overcome the problems of MON and SPION, we developed mesoporous SPIONs (MSPIONs) with an average diameter of 70 nm and pore size of 3.9 nm. Sorafenib (SFN) and/or brequinar (BQR) were loaded into the mesopores of MSPION, generating SFN@MSPION, BQR@MSPION and SFN/BQR@MSPION with high DLC of 11.5% (SFN), 10.1% (BQR) and 10.0% (SNF + BQR), demonstrating that our MSPION is a generic DDS. SFN/BQR@MSPION can be used for high performance ferroptosis therapy of tumors because: (1) the released Fe2+/3+ in tumor microenvironment (TME) can produce •OH via Fenton reaction; (2) the released SFN in TME can inhibit the cystine/glutamate reverse transporter, decrease the intracellular glutathione (GSH) and GSH peroxidase 4 levels, and thus enhance reactive oxygen species and lipid peroxide levels; (3) the released BQR in TME can further enhance the intracellular oxidative stress via dihydroorotate dehydrogenase inhibition. The ferroptosis therapeutic mechanism, efficacy and biosafety of MSPION-based DDS were verified on tumor cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Wei Xiong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Qingdeng Fan
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Fang Hu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Junbing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Bo Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, 510515, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119228, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
19
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
20
|
Li WH, Su JY, Zhang BD, Zhao L, Zhuo SH, Wang TY, Hu HG, Li YM. Myeloid Cell-Triggered In Situ Cell Engineering for Robust Vaccine-Based Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308155. [PMID: 38295870 DOI: 10.1002/adma.202308155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Following the success of the dendritic cell (DC) vaccine, the cell-based tumor vaccine shows its promise as a vaccination strategy. Except for DC cells, targeting other immune cells, especially myeloid cells, is expected to address currently unmet clinical needs (e.g., tumor types, safety issues such as cytokine storms, and therapeutic benefits). Here, it is shown that an in situ injected macroporous myeloid cell adoptive scaffold (MAS) not only actively delivers antigens (Ags) that are triggered by scaffold-infiltrating cell surface thiol groups but also releases granulocyte-macrophage colony-stimulating factor and other adjuvant combos. Consequently, this promotes cell differentiation, activation, and migration from the produced monocyte and DC vaccines (MASVax) to stimulate antitumor T-cell immunity. Neoantigen-based MASVax combined with immune checkpoint blockade induces rejection of established tumors and long-term immune protection. The combined depletion of immunosuppressive myeloid cells further enhances the efficacy of MASVax, indicating the potential of myeloid cell-based therapies for immune enhancement and normalization treatment of cancer.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lang Zhao
- Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Shao-Hua Zhuo
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian-Yang Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hong-Guo Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Zheng A, Ning Z, Wang X, Li Z, Sun Y, Wu M, Zhang D, Liu X, Chen J, Zeng Y. Human serum albumin as the carrier to fabricate STING-activating peptide nanovaccine for antitumor immunotherapy. Mater Today Bio 2024; 25:100955. [PMID: 38312800 PMCID: PMC10835291 DOI: 10.1016/j.mtbio.2024.100955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024] Open
Abstract
Tumor vaccines are emerging as one of the most promising therapeutic strategies for cancer treatment. With the advantages of low toxicity, convenient production and stable quality control, peptide vaccines have been widely used in preclinical and clinical trials involving various malignancies. However, when used alone, they still suffer from significant challenges including poor stability and immunogenicity as well as the low delivery efficiency, leading to limited therapeutic success. Herein, the STING-activating peptide nanovaccine based on human serum albumin (HSA) and biodegradable MnO2 was constructed, which can improve the stability and immunogenicity of antigenic peptides as well as facilitate their uptake by dendritic cells (DCs). Meanwhile, Mn2+ degraded from the nanovaccine can activate the STING pathway and further promote DCs maturation. In this way, the prepared nanovaccine can efficiently mediate T-cell immune responses, thereby exerting the effects of tumor prevention and therapy. Moreover, the prepared nanovaccine possesses the advantages of low cost, convenient preparation and good biocompatibility, showing great potential for practical applications.
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Jianwu Chen
- Department of Radiotherapy, Fujian Medical University Union Hospital, Fuzhou, 350004, PR China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
22
|
Huang X, Zhu X, Yang H, Li Q, Gai L, Sui X, Lu H, Feng J. Nanomaterial Delivery Vehicles for the Development of Neoantigen Tumor Vaccines for Personalized Treatment. Molecules 2024; 29:1462. [PMID: 38611742 PMCID: PMC11012694 DOI: 10.3390/molecules29071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Tumor vaccines have been considered a promising therapeutic approach for treating cancer in recent years. With the development of sequencing technologies, tumor vaccines based on neoantigens or genomes specifically expressed in tumor cells, mainly in the form of peptides, nucleic acids, and dendritic cells, are beginning to receive widespread attention. Therefore, in this review, we have introduced different forms of neoantigen vaccines and discussed the development of these vaccines in treating cancer. Furthermore, neoantigen vaccines are influenced by factors such as antigen stability, weak immunogenicity, and biosafety in addition to sequencing technology. Hence, the biological nanomaterials, polymeric nanomaterials, inorganic nanomaterials, etc., used as vaccine carriers are principally summarized here, which may contribute to the design of neoantigen vaccines for improved stability and better efficacy.
Collapse
Affiliation(s)
- Xiaoyu Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Xiaolong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Huan Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Qinyi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China;
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China;
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (X.H.); (X.Z.); (H.Y.); (Q.L.); (X.S.)
| |
Collapse
|
23
|
Ponomarev AV, Shubina IZ, Sokolova ZA, Baryshnikova MA, Kosorukov VS. Transplantable Murine Tumors in the Studies of Peptide Antitumor Vaccines. Oncol Rev 2024; 17:12189. [PMID: 38260723 PMCID: PMC10800450 DOI: 10.3389/or.2023.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Numerous studies have shown that antitumor vaccines based on synthetic peptides are safe and can induce both CD8+ and CD4+ tumor-specific T cell responses. However, clinical results are still scarce, and such approach to antitumor treatment has not gained a wide implication, yet. Recently, particular advances have been achieved due to tumor sequencing and the search for immunogenic neoantigens caused by mutations. One of the most important issues for peptide vaccines, along with the choice of optimal adjuvants and vaccination regimens, is the search for effective target antigens. Extensive studies of peptide vaccines, including those on murine models, are required to reveal the effective vaccine constructs. The review presents transplantable murine tumors with the detected peptides that showed antitumor efficacy as a vaccine compound.
Collapse
|
24
|
Zheng P, He J, Yang Z, Fu Y, Yang Y, Li W, Ding Y, Yang X, Ma Y. Neoantigen-Based Nanovaccine In Combination with Immune Checkpoint Inhibitors Abolish Postsurgical Tumor Recurrence and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302922. [PMID: 37649222 DOI: 10.1002/smll.202302922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Indexed: 09/01/2023]
Abstract
The notorious limitation of conventional surgical excision of primary tumor is the omission of residual and occult tumor cells, which often progress to recurrence and metastasis, leading to clinical treatment failure. The therapeutic vaccine is emerging as a promising candidate for dealing with the issue of postsurgical tumor residuals or nascent metastasis. Here, a flexible and modularized nanovaccine scaffold based on the SpyCatcher003-decorated shell (S) domain of norovirus (Nov) is employed to support the presentation of varied tumor neoantigens fused with SpyTag003. The prepared tumor neoantigen-based nanovaccines (Neo-NVs) are able to efficiently target to lymph nodes and engage with DCs in LNs, triggering strong antigen-specific T-cell immunity and significantly inhibiting the growth of established orthotopic 4T1 breast tumor in mice. Further, the combination of Neo-NVs and anti-PD-1 monoclonal antibody (mAb) produces significant inhibition on postsurgical tumor recurrence and metastasis and induces a long-lasting immune memory. In conclusion, the study provides a simple and reliable strategy for rapid preparing personalized neoantigens-based cancer vaccines and engaging checkpoint treatment to restore the capability of tumor immune surveillance and clearance in surgical patients.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Cuihu North Road, Kunming, 650091, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| |
Collapse
|
25
|
Wu M, Luo Z, Cai Z, Mao Q, Li Z, Li H, Zhang C, Zhang Y, Zhong A, Wu L, Liu X. Spleen-targeted neoantigen DNA vaccine for personalized immunotherapy of hepatocellular carcinoma. EMBO Mol Med 2023; 15:e16836. [PMID: 37552209 PMCID: PMC10565630 DOI: 10.15252/emmm.202216836] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Neoantigens are emerging as attractive targets to develop personalized cancer vaccines, but their immunization efficacy is severely hampered by their restricted accessibility to lymphoid tissues where immune responses are initiated. Leveraging the capability of red blood cells (RBCs) to capture and present pathogens in peripheral blood to the antigen-presenting cells (APCs) in spleen, we developed a RBC-driven spleen targeting strategy to deliver DNA vaccine encoding hepatocellular carcinoma (HCC) neoantigen. The DNA vaccine-encapsulating polymeric nanoparticles that were intentionally hitchhiked on the preisolated RBCs could preferentially accumulate in the spleen to promote the neoantigen expression by APCs, resulting in the burst of neoantigen-specific T-cell immunity to prevent tumorigenesis in a personalized manner, and slow down tumor growth in the established aggressively growing HCC. Remarkably, when combined with anti-PD-1, the vaccine achieved complete tumor regression and generated a robust systemic immune response with long-term tumor-specific immunological memory, which thoroughly prevented tumor recurrence and spontaneous lung metastasis. This study offers a prospective strategy to develop personalized neoantigen vaccines for augmenting cancer immunotherapy efficiency in immune "cold" HCC.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Zijin Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Qianqian Mao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of MedicineZhejiang UniversityHangzhouChina
| | - Hao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Aoxue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| | - Liming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of MedicineZhejiang UniversityHangzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhouChina
- Mengchao Med‐X CenterFuzhou UniversityFuzhouChina
| |
Collapse
|
26
|
Nie X, Shi C, Chen X, Yu C, Jiang Z, Xu G, Lin Y, Tang M, Luan Y. A single-shot prophylactic tumor vaccine enabled by an injectable biomembrane hydrogel. Acta Biomater 2023; 169:306-316. [PMID: 37574158 DOI: 10.1016/j.actbio.2023.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Prophylactic tumor vaccines hold great promise against tumor occurrence. However, their clinical efficacy remains low due to inadequate activation of strong-sustainable immunity. Herein, a biomembrane hydrogel was designed as a powerful single-shot prophylactic tumor vaccine. Mannose-decorated hybrid biomembrane (MHCM) modified with oxidized sodium alginate (OSA) was designed as a gelator (O-MHCM), where the hybrid biomembrane (HCM) is a hybridization of bacterial outer membrane vesicles (OMV) and tumor cell membranes (TCM). The O-MHCM enables quick gelation subcutaneously where the cysteine protease inhibitor E64 is encapsulated in hydrogel micropores. After a single vaccination of E64@O-MHCM hydrogel, MHCM and E64 are released sustainably due to OSA moiety degradation. The MHCM enables active targeting to dendritic cells (DC) and effective DC maturation. Meanwhile, the E64 enables sufficient antigen availability for subsequent cross presentation. Ultimately, strong and sustainable T lymphocyte-mediated immunity was elicited, demonstrating a strong prophylactic effect against breast tumors. This study provides a long-lasting platform to prevent tumor occurrence, opening an innovative avenue for the design of a single-shot prophylactic tumor vaccine. STATEMENT OF SIGNIFICANCE: Developing a single-shot prophylactic tumor vaccine to elicit strong-sustainable immunity is of great interest clinically. Here, a prophylactic tumor vaccine was designed using an injectable biomembrane hydrogel for achieving strong-sustainable immunity. The mannose-tailored hybrid biomembrane was modified with oxidized sodium alginate to result in a gelator, which enabled the formation of the hydrogel after subcutaneous injection. Cysteine protease inhibitor E64 was incorporated into the micropores of the hydrogel. The hydrogel induced strong-sustainable immunity through the continuous release of active components. This was facilitated by the mannose moiety, which enabled active targeting, as well as the antigen and adjuvant function of biomembrane, and the E64-enabled suppression of antigen degradation. The biomembrane hydrogel demonstrated powerful prevention of 4T1 breast tumors. This study offers an attractive strategy for designing a single-shot prophylactic tumor vaccine.
Collapse
Affiliation(s)
- Xinxin Nie
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhuan Shi
- Department of Pharmacy, Dongying People's Hospital, Dongying, 257091, China
| | - Xiangwu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Cancan Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zeyu Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guixiang Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yang Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mingtan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
27
|
Li H, Liu M, Zhang S, Xie X, Zhu Y, Liu T, Li J, Tu Z, Wen W. Construction of CpG Delivery Nanoplatforms by Functionalized MoS 2 Nanosheets for Boosting Antitumor Immunity in Head and Neck Squamous Cell Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300380. [PMID: 37340576 DOI: 10.1002/smll.202300380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Despite the promising achievements of immune checkpoint blockade (ICB) therapy for tumor treatment, its therapeutic effect against solid tumors is limited due to the suppressed tumor immune microenvironment (TIME). Herein, a series of polyethyleneimine (Mw = 0.8k, PEI0.8k )-covered MoS2 nanosheets with different sizes and charge densities are synthesized, and the CpG, a toll-like receptor-9 agonist, is enveloped to construct nanoplatforms for the treatment of head and neck squamous cell carcinoma (HNSCC). It is proved that functionalized nanosheets with medium size display similar CpG loading capacity regardless of low or high PEI0.8k coverage owing to the flexibility and crimpability of 2D backbone. CpG-loaded nanosheets with medium size and low charge density (CpG@MM -PL ) could promote the maturation, antigen-presenting capacity, and proinflammatory cytokines generation of bone marrow-derived dendritic cells (DCs). Further analysis reveals that CpG@MM -PL effectively boosts the TIME of HNSCC in vivo including DC maturation and cytotoxic T lymphocyte infiltration. Most importantly, the combination of CpG@MM -PL and ICB agents anti-programmed death 1 hugely improves the tumor therapeutic effect, inspiring more attempts for cancer immunotherapy. In addition, this work uncovers a pivotal feature of the 2D sheet-like materials in nanomedicine development, which should be considered for the design of future nanosheet-based therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Ming Liu
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Shuaiyin Zhang
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Xinran Xie
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tianrun Liu
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Jian Li
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhaoxu Tu
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Weiping Wen
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Department of Otolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
28
|
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, Wu P. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol 2023; 13:1211262. [PMID: 37692854 PMCID: PMC10484753 DOI: 10.3389/fonc.2023.1211262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor vaccines aim to activate dormant or unresponsive tumor-specific T lymphocytes by using tumor-specific or tumor-associated antigens, thus enhancing the body's natural defense against cancer. However, the effectiveness of tumor vaccines is limited by the presence of tumor heterogeneity, low immunogenicity, and immune evasion mechanisms. Fortunately, multifunctional nanoparticles offer a unique chance to address these issues. With the advantages of their small size, high stability, efficient drug delivery, and controlled surface chemistry, nanomaterials can precisely target tumor sites, improve the delivery of tumor antigens and immune adjuvants, reshape the immunosuppressive tumor microenvironment, and enhance the body's anti-tumor immune response, resulting in improved efficacy and reduced side effects. Nanovaccine, a type of vaccine that uses nanotechnology to deliver antigens and adjuvants to immune cells, has emerged as a promising strategy for cancer immunotherapy due to its ability to stimulate immune responses and induce tumor-specific immunity. In this review, we discussed the compositions and types of nanovaccine, and the mechanisms behind their anti-tumor effects based on the latest research. We hope that this will provide a more scientific basis for designing tumor vaccines and enhancing the effectiveness of tumor immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
29
|
Han J, Lim J, Wang CPJ, Han JH, Shin HE, Kim SN, Jeong D, Lee SH, Chun BH, Park CG, Park W. Lipid nanoparticle-based mRNA delivery systems for cancer immunotherapy. NANO CONVERGENCE 2023; 10:36. [PMID: 37550567 PMCID: PMC10406775 DOI: 10.1186/s40580-023-00385-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Cancer immunotherapy, which harnesses the power of the immune system, has shown immense promise in the fight against malignancies. Messenger RNA (mRNA) stands as a versatile instrument in this context, with its capacity to encode tumor-associated antigens (TAAs), immune cell receptors, cytokines, and antibodies. Nevertheless, the inherent structural instability of mRNA requires the development of effective delivery systems. Lipid nanoparticles (LNPs) have emerged as significant candidates for mRNA delivery in cancer immunotherapy, providing both protection to the mRNA and enhanced intracellular delivery efficiency. In this review, we offer a comprehensive summary of the recent advancements in LNP-based mRNA delivery systems, with a focus on strategies for optimizing the design and delivery of mRNA-encoded therapeutics in cancer treatment. Furthermore, we delve into the challenges encountered in this field and contemplate future perspectives, aiming to improve the safety and efficacy of LNP-based mRNA cancer immunotherapies.
Collapse
Affiliation(s)
- Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Ha Eun Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- MediArk, Chungdae-ro 1, Seowon-gu, Cheongju, Chungcheongbuk, 28644, Republic of Korea
| | - Dooyong Jeong
- R&D center of HLB Pharmaceutical Co., Ltd., Hwaseong, Gyeonggi, 18469, Republic of Korea
| | - Sang Hwi Lee
- R&D center of HLB Pharmaceutical Co., Ltd., Hwaseong, Gyeonggi, 18469, Republic of Korea
| | - Bok-Hwan Chun
- R&D center of HLB Pharmaceutical Co., Ltd., Hwaseong, Gyeonggi, 18469, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
30
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
31
|
Liu H, Xie Z, Zheng M. Carbon Dots and Tumor Antigen Conjugates as Nanovaccines for Elevated Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206683. [PMID: 36978241 DOI: 10.1002/smll.202206683] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Cancer immunotherapy has become one of the current research hotspots. However, the deficiencies including restricted immunogenicity, insufficient antigen presentation, and low responsive rate limited their therapeutic applications. Own to the small size and excellent biocompatibility, carbon dots (CDs) can serve as nanovectors to improve the efficacy of cancer immunotherapy. Herein, a tumor antigen-based nanovaccines (GMal+B16F10-Ag and GMal+CT26-Ag) by the conjugation of CDs with the tumor cell-derived antigens (B16F10-Ag and CT26-Ag) is constructed. These nanovaccines can be effectively taken up by dendritic cells (DC2.4), promote DC cell maturation, cross-present the antigen to T cells, specifically target B16F10 melanoma or CT26 colon cancers, and inhibit tumor growth distinctly. This work illustrates the promise of CDs acting as versatile carriers for antigen delivery to achieve the optimal immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin, 130012, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, P. R. China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
32
|
Son H, Shin J, Park J. Recent progress in nanomedicine-mediated cytosolic delivery. RSC Adv 2023; 13:9788-9799. [PMID: 36998521 PMCID: PMC10043881 DOI: 10.1039/d2ra07111h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cytosolic delivery of bioactive agents has exhibited great potential to cure undruggable targets and diseases. Because biological cell membranes are a natural barrier for living cells, efficient delivery methods are required to transfer bioactive and therapeutic agents into the cytosol. Various strategies that do not require cell invasive and harmful processes, such as endosomal escape, cell-penetrating peptides, stimuli-sensitive delivery, and fusogenic liposomes, have been developed for cytosolic delivery. Nanoparticles can easily display functionalization ligands on their surfaces, enabling many bio-applications for cytosolic delivery of various cargo, including genes, proteins, and small-molecule drugs. Cytosolic delivery uses nanoparticle-based delivery systems to avoid degradation of proteins and keep the functionality of other bioactive molecules, and functionalization of nanoparticle-based delivery vehicles imparts a specific targeting ability. With these advantages, nanomedicines have been used for organelle-specific tagging, vaccine delivery for enhanced immunotherapy, and intracellular delivery of proteins and genes. Optimization of the size, surface charges, specific targeting ability, and composition of nanoparticles is needed for various cargos and target cells. Toxicity issues with the nanoparticle material must be managed to enable clinical use.
Collapse
Affiliation(s)
- Hangyu Son
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Jeongsu Shin
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Joonhyuck Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| |
Collapse
|
33
|
Wu Y, Feng L. Biomaterials-assisted construction of neoantigen vaccines for personalized cancer immunotherapy. Expert Opin Drug Deliv 2023; 20:323-333. [PMID: 36634017 DOI: 10.1080/17425247.2023.2168640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cancer vaccine represents a promising strategy toward personalized immunotherapy, and its therapeutic potency highly relies on the specificity of tumor antigens. Among these extensively studied tumor antigens, neoantigens, a type of short synthetic peptides derived from random somatic mutations, have been shown to be able to elicit tumor-specific antitumor immune response for tumor suppression. However, challenges remain in the efficient and safe delivery of neoantigens to antigen-presenting cells inside lymph nodes for eliciting potent and sustained antitumor immune responses. The rapid advance of biomaterials including various nanomaterials, injectable hydrogels, and macroscopic scaffolds has been found to hold great promises to facilitate the construction of efficient cancer vaccines attributing to their high loading and controllable release capacities. AREAS COVERED In this review, we will summarize and discuss the recent advances in the utilization of different types of biomaterials to construct neoantigen-based cancer vaccines, followed by a simple perspective on the future development of such biomaterial-assisted cancer neoantigen vaccination and personalized immunotherapy. EXPERT OPINION These latest progresses in biomaterial-assisted cancer vaccinations have shown great promises in boosting substantially potentiated tumor-specific antitumor immunity to suppress tumor growth, thus preventing tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Yumin Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, PR China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, PR China
| |
Collapse
|
34
|
Hu X, Zhu H, He X, Chen J, Xiong L, Shen Y, Li J, Xu Y, Chen W, Liu X, Cao D, Xu X. The application of nanoparticles in immunotherapy for hepatocellular carcinoma. J Control Release 2023; 355:85-108. [PMID: 36708880 DOI: 10.1016/j.jconrel.2023.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related deaths worldwide, however, current clinical diagnostic and treatment approaches remain relatively limited, creating an urgent need for the development of effective technologies. Immunotherapy has emerged as a powerful treatment strategy for advanced cancer. The number of clinically approved drugs for HCC immunotherapy has been increasing. However, it remains challenging to improve their transport and therapeutic efficiency, control their targeting and release, and mitigate their adverse effects. Nanotechnology has recently gained attention for improving the effectiveness of precision therapy for HCC. We summarize the key features of HCC associated with nanoparticle (NPs) targeting, release, and uptake, the roles and limitations of several major immunotherapies in HCC, the use of NPs in immunotherapy, the properties of NPs that influence their design and application, and current clinical trials of NPs in HCC, with the aim of informing the design of delivery platforms that have the potential to improve the safety and efficacy of HCC immunotherapy,and thus, ultimately improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoqin He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lin Xiong
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayi Li
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dedong Cao
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
35
|
Liu L, Pan Y, Zhao C, Huang P, Chen X, Rao L. Boosting Checkpoint Immunotherapy with Biomaterials. ACS NANO 2023; 17:3225-3258. [PMID: 36746639 DOI: 10.1021/acsnano.2c11691] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The immune checkpoint blockade (ICB) therapy has revolutionized the field of cancer treatment, while low response rates and systemic toxicity limit its clinical outcomes. With the rapid advances in nanotechnology and materials science, various types of biomaterials have been developed to maximize therapeutic efficacy while minimizing side effects by increasing tumor antigenicity, reversing immunosuppressive microenvironment, amplifying antitumor immune response, and reducing extratumoral distribution of checkpoint inhibitors as well as enhancing their retention within target sites. In this review, we reviewed current design strategies for different types of biomaterials to augment ICB therapy effectively and then discussed present representative biomaterial-assisted immune modulation and targeted delivery of checkpoint inhibitors to boost ICB therapy. Current challenges and future development prospects for expanding the ICB with biomaterials were also summarized. We anticipate this review will be helpful for developing emerging biomaterials for ICB therapy and promoting the clinical application of ICB therapy.
Collapse
Affiliation(s)
- Lujie Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
| | - Chenchen Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
36
|
Chen S, Lv Y, Wang Y, Kong D, Xia J, Li J, Zhou Q. Tumor Acidic Microenvironment-Responsive Promodulator Iron Oxide Nanoparticles for Photothermal-Enhanced Chemodynamic Immunotherapy of Cancer. ACS Biomater Sci Eng 2023; 9:773-783. [PMID: 36598463 DOI: 10.1021/acsbiomaterials.2c01287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer nanomedicine combined with immunotherapy has emerged as a promising strategy for the treatment of cancer. However, precise regulation of the activation of antitumor immunity in targeting tissues for safe and effective cancer immunotherapy remains challenging. Herein, we report a tumor acidic microenvironment-responsive promodulator iron oxide nanoparticle (termed as FGR) with pH-activated action for photothermal-enhanced chemodynamic immunotherapy of cancer. FGR is formed via surface-modifying iron oxide nanoparticles with a dextran-conjugated Toll-like receptor agonist (R848) containing an acid-labile bond. In an acidic tumor microenvironment, the acid-responsive bonds are hydrolyzed to trigger the specific release of R848 to promote the maturation of dendritic cells. In addition, iron oxide nanoparticles within FGR exert photothermal and chemodynamic effects under near-infrared laser irradiation to directly kill tumor cells and induce immunogenic cell death. The synergistic effect of the released immunogenic factors and the acid-activated TLR7/8 pathway stimulates the formation of strong antitumor immunity, resulting in increased infiltration of cytotoxic CD8+ T cells into tumor tissues. As a result, FGR achieves acid-responsive on-demand release and activation of modulators in tumor sites and mediates photothermal-enhanced chemodynamic immunotherapy to inhibit the growth and metastasis of melanoma. Therefore, this work proposes a general strategy for designing prodrug nanomedicines to accurately regulate cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong 510630, P. R. China
| | - Yicheng Lv
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, P. R. China
| | - Deping Kong
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, P. R. China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Quan Zhou
- Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, Guangdong 510630, P. R. China
| |
Collapse
|
37
|
Wang Y, Wu M, Wang X, Wang P, Ning Z, Zeng Y, Liu X, Sun H, Zheng A. Biodegradable MnO 2-based gene-engineered nanocomposites for chemodynamic therapy and enhanced antitumor immunity. Mater Today Bio 2023; 18:100531. [PMID: 36619204 PMCID: PMC9812708 DOI: 10.1016/j.mtbio.2022.100531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint blockade (ICB) is emerging as a promising therapeutic approach for clinical treatment against various cancers. However, ICB based monotherapies still suffer from low immune response rate due to the limited and exhausted tumor-infiltrating lymphocytes as well as tumor immunosuppressive microenvironment. In this work, the cell membrane with surface displaying PD-1 proteins (PD1-CM) was prepared for immune checkpoint blockade, which was further combined with multifunctional and biodegradable MnO2 for systematic and robust antitumor therapy. The MnO2-based gene-engineered nanocomposites can catalyze the decomposition of abundant H2O2 in TME to generate O2, which can promote the intratumoral infiltration of T cells, and thus improve the effect of immune checkpoint blockade by PD-1 proteins on PD1-CM. Furthermore, MnO2 in the nanocomposites can be completely degraded into Mn2+, which can catalyze the generation of highly toxic hydroxyl radicals for chemodynamic therapy, thereby further enhancing the therapeutic effect. In addition, the prepared nanocomposites possess the advantages of low cost, easy preparation and good biocompatibility, which are expected to become promising agents for combination immunotherapy.
Collapse
Affiliation(s)
- Yiru Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
38
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Koyande NP, Srivastava R, Padmakumar A, Rengan AK. Advances in Nanotechnology for Cancer Immunoprevention and Immunotherapy: A Review. Vaccines (Basel) 2022; 10:1727. [PMID: 36298592 PMCID: PMC9610880 DOI: 10.3390/vaccines10101727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
One of the most effective cancer therapies, cancer immunotherapy has produced outstanding outcomes in the field of cancer treatment. However, the cost is excessive, which limits its applicability. A smart way to address this issue would be to apply the knowledge gained through immunotherapy to develop strategies for the immunoprevention of cancer. The use of cancer vaccines is one of the most popular methods of immunoprevention. This paper reviews the technologies and processes that support the advantages of cancer immunoprevention over traditional cancer immunotherapies. Nanoparticle drug delivery systems and nanoparticle-based nano-vaccines have been employed in the past for cancer immunotherapy. This paper outlines numerous immunoprevention strategies and how nanotechnology can be applied in immunoprevention. To comprehend the non-clinical and clinical evaluation of these cancer vaccines through clinical studies is essential for acceptance of the vaccines.
Collapse
Affiliation(s)
| | | | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
40
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
41
|
Huang L, Ge X, Liu Y, Li H, Zhang Z. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14061228. [PMID: 35745800 PMCID: PMC9230510 DOI: 10.3390/pharmaceutics14061228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that play a critical role in innate and adaptive immunity. Toll-like receptor agonists (TLRa) as vaccine adjuvant candidates have become one of the recent research hotspots in the cancer immunomodulatory field. Nevertheless, numerous current systemic deliveries of TLRa are inappropriate for clinical adoption due to their low efficiency and systemic adverse reactions. TLRa-loaded nanoparticles are capable of ameliorating the risk of immune-related toxicity and of strengthening tumor suppression and eradication. Herein, we first briefly depict the patterns of TLRa, followed by the mechanism of agonists at those targets. Second, we summarize the emerging applications of TLRa-loaded nanomedicines as state-of-the-art strategies to advance cancer immunotherapy. Additionally, we outline perspectives related to the development of nanomedicine-based TLRa combined with other therapeutic modalities for malignancies immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Hui Li
- Correspondence: (H.L.); (Z.Z.)
| | | |
Collapse
|
42
|
Yan J, Liu X, Wu F, Ge C, Ye H, Chen X, Wei Y, Zhou R, Duan S, Zhu R, Zheng Y, Yin L. Platelet Pharmacytes for the Hierarchical Amplification of Antitumor Immunity in Response to Self-Generated Immune Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109517. [PMID: 35388551 DOI: 10.1002/adma.202109517] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Indexed: 05/24/2023]
Abstract
Systemic immunosuppression mediated by tumor-derived exosomes is an important cause for the resistance of immune checkpoint blockade (ICB) therapy. Herein, self-adaptive platelet (PLT) pharmacytes are engineered to mediate cascaded delivery of exosome-inhibiting siRNA and anti-PD-L1 (aPDL1) toward synergized antitumor immunity. In the pharmacytes, polycationic nanocomplexes (NCs) assembled from Rab27 siRNA (siRab) and a membrane-penetrating polypeptide are encapsulated inside the open canalicular system of PLTs, and cytotoxic T lymphocytes (CTLs)-responsive aPDL1 nanogels (NGs) are covalently backpacked on the PLT surface. Upon systemic administration, the pharmacytes enable prolonged blood circulation and active accumulation to tumors, wherein PLTs are activated to liberate siRab NCs, which efficiently transfect tumor cells, silence Rab27a, and inhibit exosome secretion. The immunosuppression is thus relieved, leading to the activation, proliferation, and tumoral infiltration of cytotoxic T cells, which trigger latent aPDL1 release. As such, the competitive aPDL1 exhaustion by PD-L1-expressing exosomes is minimized to sensitize ICB. Synergistically, siRab and aPDL1 induce strong antitumor immunological response and memory against syngeneic murine melanoma. This study reports a bioinspired mechanism to resolve the blood circulation/cell internalization contradiction of polycationic siRNA delivery systems, and renders an enlightened approach for the spatiotemporal enhancement of antitumor immunity.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Xun Liu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Chenglong Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Huan Ye
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Xingye Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Rongying Zhu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
43
|
Xiang Q, Yang C, Luo Y, Liu F, Zheng J, Liu W, Ran H, Sun Y, Ren J, Wang Z. Near-Infrared II Nanoadjuvant-Mediated Chemodynamic, Photodynamic, and Photothermal Therapy Combines Immunogenic Cell Death with PD-L1 Blockade to Enhance Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107809. [PMID: 35143709 DOI: 10.1002/smll.202107809] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The efficacy of immune checkpoint inhibition in inducing death of cancer cells is affected by the immunosuppressive "cold" tumor microenvironment, which results in a poor response by the patient's antitumor immune system. However, the immunomodulatory effects of immunogenic cell death in response to irritation by heat energy and reactive oxygen species (ROS) can switch the tumor microenvironment from "cold" to "hot." This study has developed a nanoadjuvant for immune therapy using iron tungsten oxide (FeWOx)-based nanosheets with surface PEGylation (FeWOx-PEG). This FeWOx-PEG nanoadjuvant serves as a chemodynamic reagent via the Fenton reaction and acts as a photosensitizer for photodynamic and photothermal therapy under near-infrared II laser irradiation; however, it could also be used to augment tumor-infiltrating T-cells and provoke a systemic antitumor immune response by combining the immunogenic cell death triggered by ROS and photothermal therapy with the immune checkpoint blockade. This research demonstrates that application of the FeWOx-PEG nanoadjuvant under the guidance of magnetic resonance/computed tomography/photoacoustic imaging can eliminate the primary tumor and suppress the growth of distant tumors.
Collapse
Affiliation(s)
- Qinyanqiu Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400010, P. R. China
| | - Yuanli Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Fan Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jianli Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
44
|
Wang Y, Zhao Q, Zhao B, Zheng Y, Zhuang Q, Liao N, Wang P, Cai Z, Zhang D, Zeng Y, Liu X. Remodeling Tumor-Associated Neutrophils to Enhance Dendritic Cell-Based HCC Neoantigen Nano-Vaccine Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105631. [PMID: 35142445 PMCID: PMC9009112 DOI: 10.1002/advs.202105631] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Hepatocellular carcinoma (HCC) commonly emerges in an immunologically "cold" state, thereafter protects it away from cytolytic attack by tumor-infiltrating lymphocytes, resulting in poor response to immunotherapy. Herein, an acidic/photo-sensitive dendritic cell (DCs)-based neoantigen nano-vaccine has been explored to convert tumor immune "cold" state into "hot", and remodel tumor-associated neutrophils to potentiate anticancer immune response for enhancing immunotherapy efficiency. The nano-vaccine is constructed by SiPCCl2 -hybridized mesoporous silica with coordination of Fe(III)-captopril, and coating with exfoliated membrane of matured DCs by H22-specific neoantigen stimulation. The nano-vaccines actively target H22 tumors and induce immunological cell death to boost tumor-associated antigen release by the generation of excess 1 O2 through photodynamic therapy, which act as in situ tumor vaccination to strengthen antitumor T-cell response against primary H22 tumor growth. Interestingly, the nano-vaccines are also home to lymph nodes to directly induce the activation and proliferation of neoantigen-specific T cells to suppress the primary/distal tumor growth. Moreover, the acidic-triggered captopril release in tumor microenvironment can polarize the protumoral N2 phenotype neutrophils to antitumor N1 phenotype for improving the immune effects to achieve complete tumor regression (83%) in H22-bearing mice and prolong the survival time. This work provides an alternative approach for developing novel HCC immunotherapy strategies.
Collapse
Affiliation(s)
- Yunhao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Binyu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Liver Disease CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhou350005P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| |
Collapse
|
45
|
Zhao Q, Wang Y, Zhao B, Chen H, Cai Z, Zheng Y, Zeng Y, Zhang D, Liu X. Neoantigen Immunotherapeutic-Gel Combined with TIM-3 Blockade Effectively Restrains Orthotopic Hepatocellular Carcinoma Progression. NANO LETTERS 2022; 22:2048-2058. [PMID: 35133159 DOI: 10.1021/acs.nanolett.1c04977] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we integrate the Hepa1-6 liver cancer-specific neoantigen, toll-like receptor 9 agonist and stimulator of interferon genes agonist by silk-hydrogel package, and combine with TIM-3 blockade to elicit robust antitumor immunity for effectively suppressing orthotopic hepatocellular carcinoma (HCC) progression. Unlike intradermal injection of simple mixed components with short-term immune protection, the neoantigen immunotherapeutic-gels evoke long-term immune protection to achieve significant prophylactic and therapeutic activity against HCC through only one-shot administration without any side effects. Notably, the synergized immunotherapy by further combining NGC-gels with TIM-3 antibody significantly reduces regulatory T-cells and increases the IFN-γ and IL-12p70 levels in tumor tissues for promoting the infiltration of IFN-γ+CD8+T-cells and 41BB+CD8+T-cells to achieve complete remission (4/7) and prevent pulmonary metastasis in orthotopic HCC, and establish long-term memory against tumor rechallenge with remarkably longer survival time (180 days). Overall, this study provides an attractive and promising synergistic strategy for HCC immunotherapy with possible clinical translation prospects.
Collapse
Affiliation(s)
- Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yunhao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Binyu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Hengkai Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
46
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|
47
|
Niu Y, Yang H, Yu Z, Gao C, Ji S, Yan J, Han L, Huo Q, Xu M, Liu Y. Intervention with the Bone-Associated Tumor Vicious Cycle through Dual-Protein Therapeutics for Treatment of Skeletal-Related Events and Bone Metastases. ACS NANO 2022; 16:2209-2223. [PMID: 35077154 DOI: 10.1021/acsnano.1c08269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone metastasis is a common metastasis site such as lung cancer, prostate cancer, and other malignant tumors. The occurrence of bone metastases of lung cancer is often accompanied by bone loss, fracture, and other skeletal-related events (SREs) caused by tumor proliferation and osteoclast activation. Furthermore, along with the differentiation and maturation of osteoclasts in the bone microenvironment, it will further promote the occurrence and development of bone metastasis. Protein drugs are one of the most promising therapeutic pharmaceuticals, but in vivo delivery of protein therapeutics still confronts great challenges. In order to more effectively conquer bone metastases and alleviate SREs, herein, we constructed biomineralized metal-organic framework (MOF) nanoparticles carrying protein toxins with both bone-seeking and CD44-receptor-targeting abilities. More importantly, through combination with Receptor Activator of Nuclear Factor-κ B Ligand (RANKL) antibody, in vivo results demonstrated that these two protein agents not only enhanced the detraction effects of protein toxin agents as ribosome-inactivating protein (RIP) on bone metastatic tumor cells but also exhibited synergistic intervention of the crosstalk between bone cells and tumor cells and reduced SREs such as bone loss. Collectively, we expect that this strategy can provide an effective and safe option in regulating bone-tumor microenvironments to overcome bone metastasis and SREs.
Collapse
Affiliation(s)
- Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hongbin Yang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Cuicui Gao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jie Yan
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Lei Han
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
48
|
Zhao P, Xu Y, Ji W, Li L, Qiu L, Zhou S, Qian Z, Zhang H. Hybrid Membrane Nanovaccines Combined with Immune Checkpoint Blockade to Enhance Cancer Immunotherapy. Int J Nanomedicine 2022; 17:73-89. [PMID: 35027827 PMCID: PMC8752078 DOI: 10.2147/ijn.s346044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose Cancer vaccines are a promising therapeutic approach in cancer immunotherapy and can inhibit tumor growth and prevent tumor recurrence and metastasis by activating a sustained antitumor immunoprotective effect. However, the therapeutic effect of cancer vaccines is severely weakened by the low immunogenicity of cancer antigens and the immunosuppressive microenvironment in tumor tissues. Methods Here, we report a novel hybrid membrane nanovaccine, composed of mesoporous silica nanoparticle as a delivery carrier, hybrid cell membranes obtained from dendritic cells and cancer cells, and R837 as an immune adjuvant (R837@HM-NPs). We investigated the anti-tumor, tumor recurrence and metastasis prevention abilities of R837@HM-NPs and their mechanisms of action through a series of in vivo and ex vivo experiments. Results R837@HM-NPs not only provide effective antigenic stimulation but are also a durable supply of the immune adjuvant R837. In addition, R837@HM-NPs promote antigen endocytosis into dendritic cells via various receptor-mediated pathways. Compared with HM-NPs or R837@HM-NPs, R837@HM-NPs in combination with an immune checkpoint blockade showed stronger antitumor immune responses in inhibiting tumor growth, thus eliminating established tumors, and rejecting re-challenged tumors by regulating the immunosuppressive microenvironment and immunological memory effect. Conclusion These findings suggest that the hybrid membrane nanovaccine in combination with immune checkpoint blockade is a powerful strategy to enhance antitumor immunotherapy without concerns of systemic toxicity.
Collapse
Affiliation(s)
- Peiqi Zhao
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Yuanlin Xu
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Wei Ji
- Public Laboratory, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Lanfang Li
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| |
Collapse
|
49
|
Liao JY, Zhang S. Safety and Efficacy of Personalized Cancer Vaccines in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Oncol 2021; 11:663264. [PMID: 34123821 PMCID: PMC8193725 DOI: 10.3389/fonc.2021.663264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer immunotherapy can induce sustained responses in patients with cancers in a broad range of tissues, however, these treatments require the optimized combined therapeutic strategies. Despite immune checkpoint inhibitors (ICIs) have lasting clinical benefit, researchers are trying to combine them with other treatment modalities, and among them the combination with personalized cancer vaccines is attractive. Neoantigens, arising from mutations in cancer cells, can elicit strong immune response without central tolerance and out-target effects, which is a truly personalized method. Growing studies show that the combination can elevate the antitumor efficacy with acceptable safety and minimal additional toxicity compared with single agent vaccine or ICI. Herein, we have searched these preclinical and clinical trials and summarized safety and efficacy of personalized cancer vaccines combined with ICIs in several malignancies. Meanwhile, we discuss the rationale of the combination and future challenges.
Collapse
Affiliation(s)
- Juan-Yan Liao
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, Chengdu, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, Chengdu, China
| |
Collapse
|
50
|
Chen C, Tong Y, Zheng Y, Shi Y, Chen Z, Li J, Liu X, Zhang D, Yang H. Cytosolic Delivery of Thiolated Mn-cGAMP Nanovaccine to Enhance the Antitumor Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006970. [PMID: 33719177 DOI: 10.1002/smll.202006970] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/07/2021] [Indexed: 06/12/2023]
Abstract
As a stimulator of interferon gene (STING), cyclic dinucleotide activates a broad cellular immune response for anti-cancer immunotherapy (CIT). However, the inherent of instability of 2' 3'-cyclic-GMP-AMP (cGAMP) with poor cellular targeting, rapid clearance, and inefficient transport to the cytoplasm seriously hinders cGAMP potency. Here, a thiolated and Mn2+ coordinated cyclic dinucleotide nanovaccine (termed as Mn-cGAMP NVs) to enable direct cytosolic co-delivery of cGAMP and Mn2+ to potentiate the antitumor immune response is presented. In the NVs, the fixation cGAMP with Mn2+ ions not only improve its stability, but also potentiate the activation of STING. Meanwhile, the presence of polysulfides on the NVs surface allowed direct cytosolic delivery while avoiding degradation. In this way, the production of cytokines for activating T cells immunity is greatly elevated, which in turn suppressed the primary and distal tumors growth through long-term immune memory and led to long-term survival of poorly immunogenic B16F10 melanoma mice. Moreover, by further combining with anti-PD-L1 monoclonal antibody, synergistic T cells antitumor immune response is elicited. This work offers a promising strategy to enhance the potency of cGAMP, holding a considerable potential for CIT applications.
Collapse
Affiliation(s)
- Chengyun Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yuhong Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|