1
|
Li Y, Wang H, Mao D, Che X, Chen Y, Liu Y. Understanding pre-metastatic niche formation: implications for colorectal cancer liver metastasis. J Transl Med 2025; 23:340. [PMID: 40098140 PMCID: PMC11912654 DOI: 10.1186/s12967-025-06328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
The liver is the most commonly metastasized organ in colorectal cancer (CRC), and distant metastasis is the primary cause of mortality from CRC. In recent years, researchers have discovered that tumor cells create a "pre-metastatic niche (PMN)" favorable to metastasis before reaching the metastatic location. This review discusses the many processes and mechanisms that lead to PMN formation in CRC, including gut microbiota, stem cell stimulation, immunocyte interactions, and the induction of extracellular vesicles that carry important information. It examines research methods and diagnostic and therapeutic approaches for treating metastatic CRC with PMN. The crucial significance of PMN formation in metastatic CRC is also highlighted.
Collapse
Affiliation(s)
- Yaqin Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyu Che
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Administration of Traditional Chinese Medicine of Jiangsu Province, Nanjing, China.
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Administration of Traditional Chinese Medicine of Jiangsu Province, Nanjing, China.
| |
Collapse
|
2
|
Yang J, Zhou F, Luo X, Fang Y, Wang X, Liu X, Xiao R, Jiang D, Tang Y, Yang G, You L, Zhao Y. Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies. Cell Death Discov 2025; 11:84. [PMID: 40032852 DOI: 10.1038/s41420-025-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
3
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
4
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Kotrulev M, Gomez-Touriño I, Cordero OJ. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers (Basel) 2024; 16:2427. [PMID: 39001488 PMCID: PMC11240764 DOI: 10.3390/cancers16132427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Soluble CD26 (sCD26), a glycoprotein with dipeptidyl peptidase (DPP4) enzymatic activity, can contribute to early diagnosis of colorectal cancer and advanced adenomas and has been studied, including for prognostic purposes, across various other types of cancer and disease. The latest research in this field has confirmed that most, though not all, serum/plasma sCD26 is related to inflammation. The shedding and/or secretion of sCD26 from different immune cells are being investigated, and blood DPP4 activity levels do not correlate very strongly with protein titers. Some of the main substrates of this enzyme are key chemokines involved in immune cell migration, and both soluble and cell-surface CD26 can bind adenosine deaminase (ADA), an enzyme involved in the metabolism of immunosuppressor extracellular adenosine. Of note, there are T cells enriched in CD26 expression and, in mice tumor models, tumor infiltrating lymphocytes exhibited heightened percentages of CD26+ correlating with tumor regression. We employed sCD26 as a biomarker in the follow-up after curative resection of colorectal cancer for the early detection of tumor recurrence. Changes after treatment with different biological disease-modifying antirheumatic drugs, including Ig-CTLA4, were also observed in rheumatoid arthritis. Serum soluble CD26/DPP4 titer variation has recently been proposed as a potential prognostic biomarker after a phase I trial in cancer immunotherapy with a humanized anti-CD26 antibody. We propose that dynamic monitoring of sCD26/DPP4 changes, in addition to well-known inflammatory biomarkers such as CRP already in use as informative for immune checkpoint immunotherapy, may indicate resistance or response during the successive steps of the treatment. As tumor cells expressing CD26 can also produce sCD26, the possibility of sorting immune- from non-immune-system-originated sCD26 is discussed.
Collapse
Affiliation(s)
- Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Iria Gomez-Touriño
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Oscar J. Cordero
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Shi Z, Liu M, Zhang X, Wang J, Zhang J, Peng Z, Meng L, Wang R, Guo L, Zhang Q, Li J, Yang L, Liu J, Xu Y, Yan J, Cui J, Ren S, Gao Y, Wang Y, Qi Z. A novel selenium analog of HDACi-based twin drug induces apoptosis and cell cycle arrest via CDC25A to improve prostate cancer therapy. Theranostics 2024; 14:3565-3582. [PMID: 38948069 PMCID: PMC11209715 DOI: 10.7150/thno.92119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/02/2024] [Indexed: 07/02/2024] Open
Abstract
Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Miaomiao Liu
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Xiaowen Zhang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jingyang Wang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Junwei Zhang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zeyan Peng
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Li Meng
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Ruijing Wang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Lihong Guo
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Qiang Zhang
- Department of Clinical Laboratory, Branch of Tianjin Third Central Hospital, Tianjin 300250, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shan Ren
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, China
| | - Yanming Wang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, China
| |
Collapse
|
7
|
Mohamad Zamberi NN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE. dCas9 Tells Tales: Probing Gene Function and Transcription Regulation in Cancer. CRISPR J 2024; 7:73-87. [PMID: 38635328 DOI: 10.1089/crispr.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing is evolving into an essential tool in the field of biological and medical research. Notably, the development of catalytically deactivated Cas9 (dCas9) enzyme has substantially broadened its traditional boundaries in gene editing or perturbation. The conjugation of dCas9 with various molecular effectors allows precise control over transcriptional processes, epigenetic modifications, visualization of chromosomal dynamics, and several other applications. This expanded repertoire of CRISPR-Cas9 applications has emerged as an invaluable molecular tool kit that empowers researchers to comprehensively interrogate and gain insights into health and diseases. This review delves into the advancements in Cas9 protein engineering, specifically on the generation of various dCas9 tools that have significantly enhanced the CRISPR-based technology capability and versatility. We subsequently discuss the multifaceted applications of dCas9, especially in interrogating the regulation and function of genes that involve in supporting cancer pathogenesis. In addition, we also delineate the designing and utilization of dCas9-based tools as well as highlighting its current constraints and transformative potentials in cancer research.
Collapse
Affiliation(s)
- Nurul Nadia Mohamad Zamberi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Asmaa Y Abuhamad
- Bionanotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
8
|
Song G, Zhang Z, Chen Y, Hou W, Zhong W, Zhou Y, Zhang A, Xu Y. PU.1 induces tumor-associated macrophages promoting glioma progression through BTK-mediated Akt/mTOR pathway activation. Am J Cancer Res 2024; 14:1139-1156. [PMID: 38590399 PMCID: PMC10998749 DOI: 10.62347/usaj2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Glioma, the most common primary malignant brain tumor, is characterized by infiltrating immune cells that contribute to tumor progression and therapeutic resistance. Tumor-associated macrophages (TAMs) constitute a significant proportion of these infiltrating immune cells and have been implicated in glioma progression. However, the underlying molecular mechanisms by which TAMs promote glioma progression remain elusive. In this study, we investigated the role of PU.1, a crucial transcription factor involved in myeloid cell development, in glioma-associated macrophage polarization and activation. First, bioinformatics and analysis of clinical glioma samples demonstrated a positive correlation between PU.1 expression in TAMs and disease severity. Further experiments using in vitro coculture systems revealed that the expression of PU.1 is increased in glioma cells vs. control cells. Importantly, PU.1-overexpressing macrophages exhibited a protumorigenic phenotype characterized by enhanced migration, invasion, and proliferation. Mechanistically, we found that PU.1-induced activation of the Bruton tyrosine kinase (BTK) signaling pathway led to Akt/mTOR pathway activation in macrophages, which further enhanced their protumorigenic functions. Furthermore, pharmacological inhibition of the BTK or Akt/mTOR pathway reversed the protumorigenic effects of macrophages in vitro and impaired their ability to promote glioma progression in vivo. In conclusion, our study elucidates a novel mechanism by which PU.1 induces the polarization and activation of TAMs in the glioma microenvironment. We highlight the significance of BTK-mediated Akt/mTOR pathway activation in driving the protumorigenic functions of TAMs. Targeting PU.1 and its downstream signaling pathways in TAMs may provide a promising therapeutic strategy to suppress glioma progression and improve patient outcomes.
Collapse
Affiliation(s)
- Gu Song
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai, China
| | - Yan Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Weiliang Hou
- Department of Neurosurgery, Huashan Hospital, School of Medicine, Fudan UniversityShanghai, China
| | - Weiwei Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
| | - Yuhang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, School of Medicine, Fudan UniversityShanghai, China
- Department of Neurosurgery, Stanford HospitalStanford, California, U.S.A
| |
Collapse
|
9
|
Vishnevsky OV, Bocharnikov AV, Ignatieva EV. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks. Int J Mol Sci 2024; 25:1011. [PMID: 38256085 PMCID: PMC10816497 DOI: 10.3390/ijms25021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) is a central genome-wide method for in vivo analyses of DNA-protein interactions in various cellular conditions. Numerous studies have demonstrated the complex contextual organization of ChIP-seq peak sequences and the presence of binding sites for transcription factors in them. We assessed the dependence of the ChIP-seq peak score on the presence of different contextual signals in the peak sequences by analyzing these sequences from several ChIP-seq experiments using our fully enumerative GPU-based de novo motif discovery method, Argo_CUDA. Analysis revealed sets of significant IUPAC motifs corresponding to the binding sites of the target and partner transcription factors. For these ChIP-seq experiments, multiple regression models were constructed, demonstrating a significant dependence of the peak scores on the presence in the peak sequences of not only highly significant target motifs but also less significant motifs corresponding to the binding sites of the partner transcription factors. A significant correlation was shown between the presence of the target motifs FOXA2 and the partner motifs HNF4G, which found experimental confirmation in the scientific literature, demonstrating the important contribution of the partner transcription factors to the binding of the target transcription factor to DNA and, consequently, their important contribution to the peak score.
Collapse
Affiliation(s)
- Oleg V. Vishnevsky
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Andrey V. Bocharnikov
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Elena V. Ignatieva
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
10
|
Tong Q, Zhou J. Construction of a 12-gene prognostic model for colorectal cancer based on heat shock protein-related genes. Int J Hyperthermia 2024; 41:2290913. [PMID: 38191150 DOI: 10.1080/02656736.2023.2290913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Some heat shock proteins (HSPs) have been shown to influence tumor prognosis, but their prognostic significance in colorectal cancer (CRC) remains unclear. This study explored the prognostic significance of HSP-related genes in CRC. Transcriptional data and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) database, and a literature search was conducted to identify HSP-related genes. Using Least Absolute Selection and Shrinkage Operator (LASSO) regression and univariate/multivariate Cox regression analyses, 12 HSP-related genes demonstrating significant associations with CRC survival were successfully identified and employed to formulate a predictive risk score model. The efficacy and precision of this model were validated utilizing TCGA and Gene Expression Omnibus (GEO) datasets, demonstrating its reliability in CRC prognosis prediction. gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant disparities between high- and low-risk groups in chromatin remodeling biological functions and neutrophil extracellular trap formation pathways. Single sample gene set enrichment analysis (ssGSEA) further revealed differences in immune cell types and immune functional status between the two risk groups. Differential analysis showed higher expression of immune checkpoints within the low-risk group, while the high-risk group exhibited notably higher Tumor Immune Dysfunction and Exclusion (TIDE) scores. Additionally, we predicted the sensitivity of different prognosis risk patients to various drugs, providing potential drug choices for tailored treatment. Combined, our study successfully crafted a novel CRC prognostic model that can effectively predict patient survival, immune landscape, and treatment response, providing important support and guidance for CRC patient prognosis.
Collapse
Affiliation(s)
- Qin Tong
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua, China
| | - Junchao Zhou
- Department of Gastrointestinal Surgery, Jinhua Guangfu Hospital, Jinhua, China
| |
Collapse
|
11
|
Mahmoodi Chalbatani G, Gharagouzloo E, Malekraeisi MA, Azizi P, Ebrahimi A, Hamblin MR, Mahmoodzadeh H, Elkord E, Miri SR, Sanati MH, Panahi B. The integrative multi-omics approach identifies the novel competing endogenous RNA (ceRNA) network in colorectal cancer. Sci Rep 2023; 13:19454. [PMID: 37945594 PMCID: PMC10636147 DOI: 10.1038/s41598-023-46620-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Circular RNAs (circRNA) are known to function as competing endogenous RNA (ceRNA) in various cancers by regulating microRNAs (miRNA). However, in colorectal cancer (CRC), the precise pathological role of circ000240/miRNA/mRNA remains indeterminate. The expression level of hsa_circ_000240 was evaluated using qRT-PCR in matching pairs of CRC tumor and adjacent normal tissue samples in our laboratory. Then, to determine whether hsa_circ_000240 acted as a ceRNA in CRC, the linked miRNAs and gene targets were retrieved. Topological analysis of candidate genes using a network approach identified the most critical hub genes and subnetworks related to CRC disease. Microarray and bulk RNA sequencing analyses were utilized to comprehensively evaluate the expression levels of both miRNA and mRNA in CRC. Single-cell RNA-seq analysis was also used to evaluate the significant overall survival (OS) genes at the cellular level. ATAC-seq data provided insights into candidate genes' accessible chromatin regions. The research uncovered a considerable upregulation of hsa_circ_000240 in CRC tissues. Three miRNAs interacted with the target circRNA. One thousand six hundred eighty intersected genes regulated by three miRNAs were further identified, and the relevant functionality of identified neighbor genes highlighted their relevance to cancer. The topological analysis of the constructed network has identified 33 hub genes with notably high expression in CRC. Among these genes, eight, including CHEK1, CDC6, FANCI, GINS2, MAD2L1, ORC1, RACGAP1, and SMC4, have demonstrated a significant impact on overall survival. The utilization of single-cell RNA sequencing unequivocally corroborated the augmented expression levels of CDC6 and ORC1 in individuals with CRC, alongside their noteworthy connection with the infiltration of immune cells. ATAC-seq analyses revealed altered accessibility regions in Chr2, 4, and 12 for CDC6 and ORC1 high-expression. Correlation analysis of CDC6 and ORC1 further highlighted the association of candidate gene expression with exhaustion markers such as CTLA4, CD247, TIGIT, and CD244. The candidate genes exhibit a positive correlation with chromatin remodeling and histone acetylation. These epigenetic modifications play a significant role in influencing the cancer progression following expression of CDC6 and ORC1 in CRC. Additionally, results showed that the methylation rate of the promoter region of CDC6 was elevated in CRC disease, confirming the functional importance of CDC6 and their interaction with hsa_circ_000240 and associated ceRNA in CRC. In conclusion, this study highlights hsa_circ_000240's role as a ceRNA in CRC. It opens new avenues for further dissection of CDC6, ORC1, and underlying novel epigenetics and immunotherapy targets for CRC therapy.
Collapse
Affiliation(s)
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Division of Cellular and Molecular Biology, Department of Biology, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | | | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Amirabbas Ebrahimi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Eyad Elkord
- Department of Applied Biology, College of Science, University of Sharjah, Sharjah, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| | - Seyed Rohollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Hossein Sanati
- Division of Cellular and Molecular Biology, Department of Biology, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran.
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
12
|
Cai R, Lv R, Shi X, Yang G, Jin J. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation. Int J Mol Sci 2023; 24:14865. [PMID: 37834313 PMCID: PMC10573330 DOI: 10.3390/ijms241914865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
CRISPR/Cas9-mediated cleavage of DNA, which depends on the endonuclease activity of Cas9, has been widely used for gene editing due to its excellent programmability and specificity. However, the changes to the DNA sequence that are mediated by CRISPR/Cas9 affect the structures and stability of the genome, which may affect the accuracy of results. Mutations in the RuvC and HNH regions of the Cas9 protein lead to the inactivation of Cas9 into dCas9 with no endonuclease activity. Despite the loss of endonuclease activity, dCas9 can still bind the DNA strand using guide RNA. Recently, proteins with active/inhibitory effects have been linked to the end of the dCas9 protein to form fusion proteins with transcriptional active/inhibitory effects, named CRISPRa and CRISPRi, respectively. These CRISPR tools mediate the transcription activity of protein-coding and non-coding genes by regulating the chromosomal modification states of target gene promoters, enhancers, and other functional elements. Here, we highlight the epigenetic mechanisms and applications of the common CRISPR/dCas9 tools, by which we hope to provide a reference for future related gene regulation, gene function, high-throughput target gene screening, and disease treatment.
Collapse
Affiliation(s)
- Ruijie Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Runyu Lv
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Xia Q, Shen J, Wang Q, Ke Y, Yan Q, Li H, Zhang D, Duan S. LINC00324 in cancer: Regulatory and therapeutic implications. Front Oncol 2022; 12:1039366. [PMID: 36620587 PMCID: PMC9815511 DOI: 10.3389/fonc.2022.1039366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
LINC00324 is a 2082 bp intergenic noncoding RNA. Aberrant expression of LINC00324 was associated with the risk of 11 tumors and was closely associated with clinicopathological features and prognostic levels of 7 tumors. LINC00324 can sponge multiple miRNAs to form complex ceRNA networks, and can also recruit transcription factors and bind RNA-binding protein HuR, thereby regulating the expression of a number of downstream protein-coding genes. LINC00324 is involved in 4 signaling pathways, including the PI3K/AKT signaling pathway, cell cycle regulatory pathway, Notch signaling pathway, and Jak/STAT3 signaling pathway. High expression of LINC00324 was associated with larger tumors, a higher degree of metastasis, a higher TNM stage and clinical stage, and shorter OS. Currently, four downstream genes in the LINC00324 network have targeted drugs. In this review, we summarize the molecular mechanisms and clinical value of LINC00324 in tumors and discuss future directions and challenges for LINC00324 research.
Collapse
Affiliation(s)
- Qing Xia
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China,Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Ke
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Qibin Yan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China
| | - Hanbing Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Dayong Zhang, ; Shiwei Duan,
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Dayong Zhang, ; Shiwei Duan,
| |
Collapse
|
14
|
Liu J, Liu Z, Yan W, Yang H, Fang S, Deng S, Wen Y, Shen P, Li Y, Hou R, Liu X, Huang T, Li R, Zheng D, Liu Z, Fang W. ENKUR recruits FBXW7 to ubiquitinate and degrade MYH9 and further suppress MYH9-induced deubiquitination of β-catenin to block gastric cancer metastasis. MedComm (Beijing) 2022; 3:e185. [PMID: 36448053 PMCID: PMC9697592 DOI: 10.1002/mco2.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
ENKUR was shown as a suppressor in some tumors. However, the biological role of ENKUR on gastric cancer (GC) and its related molecular mechanisms is not clear. Here, we first observed that ENKUR significantly inhibited cell migration, invasion, and metastasis in GC. The molecular basis showed β-catenin-mediated epithelial-mesenchymal transition (EMT) signaling was inactivated in ENKUR-overexpressing GC cells. In addition, ENKUR knockdown markedly restored cell migration and invasion. Subsequently, ENKUR bound to MYH9 and decreased its protein expression by recruiting E3 ubiquitin ligase FBXW7 to form an ubiquitinated degradation complex. The downregulated MYH9 protein weakened the recruitment of the deubiquitinase USP2 and thus promoted the degradation of β-catenin protein, which finally suppressed EMT signaling. Finally, the oncogenic transcription factor c-Jun bound to ENKUR promoter and reduced its expression in GC. In clinical samples, decreased ENKUR expression promoted the unfavorable prognosis of GC. Our data proved the vital role of ENKUR on suppressing cell migration, invasion, and metastasis and demonstrated its potential as a therapeutic target for GC.
Collapse
Affiliation(s)
- Jiahao Liu
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Zhan Liu
- Department of GastroenterologyHunan People's HospitalChangshaP.R. China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Huiling Yang
- School of PharmacyGuangdong Medical UniversityDongguanP.R. China
| | - Shiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
- School of Public HealthUniversity of South ChinaHengyangP. R. China
| | - Shuting Deng
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Yinghao Wen
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Peng Shen
- Oncology DepartmentNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Rentao Hou
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Xiong Liu
- Oncology DepartmentNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Tao Huang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Rong Li
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouP. R. China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouP. R. China
| |
Collapse
|
15
|
Niu Y, Yang W, Qian H, Sun Y. Intracellular and extracellular factors of colorectal cancer liver metastasis: a pivotal perplex to be fully elucidated. Cancer Cell Int 2022; 22:341. [DOI: 10.1186/s12935-022-02766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMetastasis is the leading cause of death in colorectal cancer (CRC) patients, and the liver is the most common site of metastasis. Tumor cell metastasis can be thought of as an invasion-metastasis cascade and metastatic organotropism is thought to be a process that relies on the intrinsic properties of tumor cells and their interactions with molecules and cells in the microenvironment. Many studies have provided new insights into the molecular mechanism and contributing factors involved in CRC liver metastasis for a better understanding of the organ-specific metastasis process. The purpose of this review is to summarize the theories that explain CRC liver metastasis at multiple molecular dimensions (including genetic and non-genetic factors), as well as the main factors that cause CRC liver metastasis. Many findings suggest that metastasis may occur earlier than expected and with specific organ-anchoring property. The emergence of potential metastatic clones, the timing of dissemination, and the distinct routes of metastasis have been explained by genomic studies. The main force of CRC liver metastasis is also thought to be epigenetic alterations and dynamic phenotypic traits. Furthermore, we review key extrinsic factors that influence CRC cell metastasis and liver tropisms, such as pre-niches, tumor stromal cells, adhesion molecules, and immune/inflammatory responses in the tumor microenvironment. In addition, biomarkers associated with early diagnosis, prognosis, and recurrence of liver metastasis from CRC are summarized to enlighten potential clinical practice, including some markers that can be used as therapeutic targets to provide new perspectives for the treatment strategies of CRC liver metastasis.
Collapse
|
16
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Identification of a Prognostic Transcriptome Signature for Hepatocellular Carcinoma with Lymph Node Metastasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7291406. [PMID: 35847584 PMCID: PMC9279092 DOI: 10.1155/2022/7291406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, and the prognosis of HCC patients with lymph node metastasis (LNM) is poor. However, robust biomarkers for predicting the prognosis of HCC LNM are still lacking. This study used weighted gene coexpression network analysis of GSE28248 (N = 80) microarray data to identify gene modules associated with HCC LNM and validated in GSE40367 dataset (N = 18). The prognosis-related genes in the HCC LNM module were further screened based on the prognostic curves of 371 HCC samples from TCGA. We finally developed a prognostic signature, PSG-30, as a prognostic-related biomarker in HCC LNM. The HCC subtypes identified by PSG-30-based consensus clustering analysis showed significant differences in prognosis, clinicopathological stage, m6A modification, ferroptosis activation, and immune characteristics. In addition, RAD54B was selected by regression model as an independent risk factor affecting the prognosis of HCC patients with LNM, and its expression was significantly positively correlated with tumor mutational burden and microsatellite instability in high-risk subtypes. Patients with high RAD54B expression had a better prognosis in the immune checkpoint inhibitor-treated cohorts but had a poor prognosis in the HCC sorafenib-treated group. The association of high RAD54B expression with LNM in breast cancer (BRCA) and cholangiocarcinoma and its prognostic effect in BRCA LNM cases suggest the value of RAD54B at the pancancer level. In conclusion, PSG-30 can effectively identify HCC LNM population with poor prognosis, and high-risk patients with high RAD54B expression may be more suitable for immunotherapy.
Collapse
|
18
|
Wu Y, Zhang T, Zhang X, Gao Q. Decoding the complexity of metastasis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0031. [PMID: 35289156 PMCID: PMC8958888 DOI: 10.20892/j.issn.2095-3941.2022.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiancheng Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Lorenz P, Steinbeck F, Krause L, Thiesen HJ. The KRAB Domain of ZNF10 Guides the Identification of Specific Amino Acids That Transform the Ancestral KRAB-A-Related Domain Present in Human PRDM9 into a Canonical Modern KRAB-A Domain. Int J Mol Sci 2022; 23:1072. [PMID: 35162997 PMCID: PMC8835667 DOI: 10.3390/ijms23031072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Krüppel-associated box (KRAB) zinc finger proteins are a large class of tetrapod transcription factors that usually exert transcriptional repression through recruitment of TRIM28/KAP1. The evolutionary root of modern KRAB domains (mKRAB) can be traced back to an ancestral motif (aKRAB) that occurs even in invertebrates. Here, we first stratified three subgroups of aKRAB sequences from the animal kingdom (PRDM9, SSX and coelacanth KZNF families) and defined ancestral subdomains for KRAB-A and KRAB-B. Using human ZNF10 mKRAB-AB as blueprints for function, we then identified the necessary amino acid changes that transform the inactive aKRAB-A of human PRDM9 into an mKRAB domain capable of mediating silencing and complexing TRIM28/KAP1 in human cells when employed as a hybrid with ZNF10-B. Full gain of function required replacement of residues KR by the conserved motif MLE (positionsA32-A34), which inserted an additional residue, and exchange of A9/S for F, A20/M for L, and A27/R for V. AlphaFold2 modelling documented an evolutionary conserved L-shaped body of two α-helices in all KRAB domains. It is transformed into a characteristic spatial arrangement typical for mKRAB-AB upon the amino acid replacements and in conjunction with a third helix supplied by mKRAB-B. Side-chains pointing outward from the core KRAB 3D structure may reveal a protein-protein interaction code enabling graded binding of TRIM28 to different KRAB domains. Our data provide basic insights into structure-function relationships and emulate transitions of KRAB during evolution.
Collapse
Affiliation(s)
- Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; (F.S.); (L.K.); (H.-J.T.)
| | - Felix Steinbeck
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; (F.S.); (L.K.); (H.-J.T.)
| | - Ludwig Krause
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; (F.S.); (L.K.); (H.-J.T.)
| | - Hans-Jürgen Thiesen
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; (F.S.); (L.K.); (H.-J.T.)
- Gesellschaft für Individualisierte Medizin (IndyMed) mbH, 17, 18055 Rostock, Germany
| |
Collapse
|