1
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
2
|
Li G, Qiu T, Wu Q, Zhao Z, Wang L, Li Y, Geng Y, Tan H. Pyrene-Alkyne-Based Conjugated Porous Polymers with Skeleton Distortion-Mediated ⋅O 2 - and 1O 2 Generation for High-Selectivity Organic Photosynthesis. Angew Chem Int Ed Engl 2024; 63:e202405396. [PMID: 38818672 DOI: 10.1002/anie.202405396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in determining photocatalytic reaction pathways, intermediate species, and product selectivity. However, research on ROS regulation in polymer photocatalysts is still in its early stages. Herein, we successfully achieved series of modulations to the skeleton of Pyrene-alkyne-based (Tetraethynylpyrene (TEPY)) conjugated porous polymers (CPPs) by altering the linkers (1,4-dibromobenzene (BE), 4,4'-dibromobiphenyl (IP), and 3,3'-dibromobiphenyl (BP)). Experiments combined with theoretical calculations indicate that BE-TEPY exhibits a planar structure with minimal exciton binding energy, which favors exciton dissociation followed by charge transfer with adsorbed O2 to produce ⋅O2 -. Thus BE-TEPY shows optimal photocatalytic activity for phenylboronic acid oxidation and [3+2] cycloaddition. Conversely, the skeleton of BP-TEPY is significantly distorted. Its planar conjugation decreases, intersystem crossing (ISC) efficiency increases, which makes it more prone for resonance energy transfer to generate 1O2. Therefore, BP-TEPY displays best photocatalytic activity in [4+2] cycloaddition and thioanisole oxidation. Both above reactant conversion and its product selectivity exceed 99 %. This work systematically reveals the intrinsic structure-activity relationship among the skeleton structure of CPPs, excitonic behavior, and selective generation of ROS, providing new insights for the rational design of highly efficient and selective CPPs photocatalysts.
Collapse
Affiliation(s)
- Guobang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| | - Qi Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| | - Zhao Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| | - Yun Geng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Faculty of Physics, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
3
|
Thakur S, Giri A. Pushing the Limits of Heat Conduction in Covalent Organic Frameworks Through High-Throughput Screening of Their Thermal Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401702. [PMID: 38567486 DOI: 10.1002/smll.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Tailor-made materials featuring large tunability in their thermal transport properties are highly sought-after for diverse applications. However, achieving `user-defined' thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure-property relationships, which has proven to be challenging. Herein, large-scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure-property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data-driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m-1 K-1) to exceptionally high (≈50 W m-1 K-1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon-carbon linkages with densities greater than 500 kg m-3, nominal void fractions (in the range of ≈0.6-0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities.
Collapse
Affiliation(s)
- Sandip Thakur
- Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ashutosh Giri
- Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
4
|
Dey A, Chakraborty S, Singh A, Rahimi FA, Biswas S, Mandal T, Maji TK. Microwave Assisted Fast Synthesis of a Donor-Acceptor COF Towards Photooxidative Amidation Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403093. [PMID: 38679566 DOI: 10.1002/anie.202403093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The synthesis of covalent organic frameworks (COFs) at bulk scale require robust, straightforward, and cost-effective techniques. However, the traditional solvothermal synthetic methods of COFs suffer low scalability as well as requirement of sensitive reaction environment and multiday reaction time (2-10 days) which greatly restricts their practical application. Here, we report microwave assisted rapid and optimized synthesis of a donor-acceptor (D-A) based highly crystalline COF, TzPm-COF in second (10 sec) to minute (10 min) time scale. With increasing the reaction time from seconds to minutes crystallinity, porosity and morphological changes are observed for TzPm-COF. Owing to visible range light absorption, suitable band alignment, and low exciton binding energy (Eb=64.6 meV), TzPm-COF can efficaciously produce superoxide radical anion (O2 .-) after activating molecular oxygen (O2) which eventually drives aerobic photooxidative amidation reaction with high recyclability. This photocatalytic approach works well with a variety of substituted aromatic aldehydes having electron-withdrawing or donating groups and cyclic, acyclic, primary or secondary amines with moderate to high yield. Furthermore, catalytic mechanism was established by monitoring the real-time reaction progress through in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study.
Collapse
Affiliation(s)
- Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Samiran Chakraborty
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Sandip Biswas
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Tamagna Mandal
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| |
Collapse
|
5
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
6
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Feng B, Chen X, Yan P, Huang S, Lu C, Ji H, Zhu J, Yang Z, Cao K, Zhuang X. Isomeric Dual-Pore Two-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023. [PMID: 37968832 DOI: 10.1021/jacs.3c09559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) with hierarchical porosity have been increasingly recognized as promising materials in various fields. Besides, the 2D COFs with kagome (kgm) topology can exhibit unique optoelectronic features and have extensive applications. However, rational synthesis of the COFs with kgm topology remains challenging because of competition with a square-lattice topology. Herein, we report two isomeric dual-pore 2D COFs with kgm topology using a novel geometric strategy to reduce the symmetry of their building blocks, which are four-armed naphthalene-based and azulene-based isomeric monomers. Owing to the large dipole moment of azulene, as-prepared azulene-based COF (COF-Az) possesses a considerably narrow band gap of down to 1.37 eV, which is much narrower than the naphthalene-based 2D COF (COF-Nap: 2.28 eV) and is the lowest band gap among reported imine-linked dual-pore 2D COFs. Moreover, COF-Az was used as electrode material in a gas sensor and exhibits high selectivity for NO2, including a high response rate (58.7%) to NO2 (10 ppm), fast recovery (72 s), up to 10 weeks of stability, and resistance to 80% relative humidity, which are superior to those of reported COF-based NO2 gas sensors. The calculation and in situ experimental results indicate that the large dipole moment of azulene boosts the sensitivity of the imine linkages. The usage of isomeric building blocks not only enables the synthesis of 2D COFs with isometric kgm topology but also provides an azulene-based 2D platform for studying the structure-property correlations of COFs.
Collapse
Affiliation(s)
- Boxu Feng
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pu Yan
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiping Ji
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kecheng Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
8
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
9
|
Pang H, Liu G, Huang D, Zhu Y, Zhao X, Wang W, Xiang Y. Embedding Hydrogen Atom Transfer Moieties in Covalent Organic Frameworks for Efficient Photocatalytic C-H Functionalization. Angew Chem Int Ed Engl 2023:e202313520. [PMID: 37921489 DOI: 10.1002/anie.202313520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.
Collapse
Affiliation(s)
- Huaji Pang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Xiaodong Zhao
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
10
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Chen L, Zhao Y, Wu W, Zeng Q, Wang JJ. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Compr Rev Food Sci Food Saf 2023; 22:3814-3846. [PMID: 37530552 DOI: 10.1111/1541-4337.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Weiliang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| |
Collapse
|
12
|
Liu M, Liu J, Li J, Zhao Z, Zhou K, Li Y, He P, Wu J, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. J Am Chem Soc 2023; 145:9198-9206. [PMID: 37125453 DOI: 10.1021/jacs.3c01273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yueming Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Peipei He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiashu Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| |
Collapse
|
13
|
Zhao Z, Liu M, Zhou K, Guo L, Shen Y, Lu D, Hong X, Bao Z, Yang Q, Ren Q, Schreiner PR, Zhang Z. Visible-Light-Induced Phenoxyl Radical-based Metal-Organic Framework for Selective Photooxidation of Sulfides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6982-6989. [PMID: 36715584 DOI: 10.1021/acsami.2c21304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phenoxyl radicals originating from phenols through oxidation or photoinduction are relatively stable and exhibit mild oxidative activity, which endows them with the potential for photocatalysis. Herein, a stable and recyclable metal-organic framework Zr-MOF-OH constructed of a binaphthol derivative ligand has been synthesized and functions as an efficient heterogeneous photocatalyst. Zr-MOF-OH shows fairly good catalytic activity and substrate compatibility toward the selective oxidation of sulfides to sulfoxides under visible light irradiation. Such irradiation of Zr-MOF-OH converts the phenolic hydroxyl groups of the binaphthol derivative ligand to phenoxyl radicals through excited state intramolecular proton transfer, and the excited state photocatalyst triggers the single-electron oxidation of the sulfide. No reactive oxygen species are produced in the photocatalytic process, and triplet O2 directly participates in the reaction, endowing Zr-MOF-OH with wide substrate compatibility and high selectivity, which also proposes a promising pathway for the direct activation of substrates via phenoxyl radicals.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lidong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yajing Shen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Dan Lu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
14
|
Li S, Yin J, Zhang H, Zhang KAI. Dual Molecular Oxygen Activation Sites on Conjugated Microporous Polymers for Enhanced Photocatalytic Formation of Benzothiazoles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2825-2831. [PMID: 36598932 DOI: 10.1021/acsami.2c16581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative formation of high value compounds involving active oxygen species using heterogeneous polymeric photocatalysts has become a useful tool in catalysis. Controlling the interaction between the active sites on polymer photocatalysts and oxygen molecules is still challenging due to the rather large polymer backbone structure. Here, we design a triazine-containing donor acceptor-type conjugated microporous polymer (CMP) containing dual major active sites at F and N atoms for molecular oxygen activation. Introducing fluorine atoms on the CMP backbone led to a combined effect of enhanced adsorption and electron transfer of oxygen. Time-resolved photoluminescence, electronic paramagnetic resonance spectra, and DFT calculation revealed favorable absorption energy and electron transfer kinetics between the CMP and oxygen molecules, thus efficiently generating superoxide radicals (O2•-) and singlet oxygen (1O2) as main active oxygen species. The photocatalytic activity, selectivity, and reusability of the CMP was demonstrated by the photocatalytic formation of a variety of benzothiazoles.
Collapse
Affiliation(s)
- Sizhe Li
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Jie Yin
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Hao Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
15
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Zhao Z, Liu M, Zhou K, Gong H, Shen Y, Bao Z, Yang Q, Ren Q, Zhang Z. Zr-Based Metal-Organic Frameworks with Phosphoric Acids for the Photo-Oxidation of Sulfides. Int J Mol Sci 2022; 23:ijms232416121. [PMID: 36555762 PMCID: PMC9784696 DOI: 10.3390/ijms232416121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Heterogeneous Brønsted acidic catalysts such as phosphoric acids are the conventional activators for organic transformations. However, the photocatalytic performance of these catalysts is still rarely explored. Herein, a novel Zr-based metal-organic framework Zr-MOF-P with phosphoric acids as a heterogeneous photocatalyst has been fabricated, which shows high selectivity and reactivity towards the photo-oxidation of sulfides under white light illumination. A mechanism study indicates that the selective oxygenation of sulfides occurs with triplet oxygen rather than common reactive oxygen species (ROS). When Zr-MOF-P is irradiated, the hydroxyl group of phosphoric acid is converted into oxygen radical, which takes an electron from the sulfides, and then the activated substrates react with the triplet oxygen to form sulfoxides, avoiding the destruction of the catalysts and endowing the reaction with high substrate compatibility and fine recyclability.
Collapse
Affiliation(s)
- Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Hantao Gong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Yajing Shen
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University—Quzhou, Quzhou 324000, China
- Correspondence:
| |
Collapse
|
17
|
Facile construction of Z-scheme AgBr/BiO(HCOO)0.75I0.25 photocatalyst for visible-light-driven BPA degradation: Catalytic kinetics, selectivity and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chen D, Chen W, Zhang G, Li S, Chen W, Xing G, Chen L. N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05233] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Shen Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| | - Guolong Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
19
|
Trenker S, Grunenberg L, Banerjee T, Savasci G, Poller LM, Muggli KIM, Haase F, Ochsenfeld C, Lotsch BV. A flavin-inspired covalent organic framework for photocatalytic alcohol oxidation. Chem Sci 2021; 12:15143-15150. [PMID: 34909156 PMCID: PMC8612393 DOI: 10.1039/d1sc04143f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Covalent organic frameworks (COFs) offer a number of key properties that predestine them to be used as heterogeneous photocatalysts, including intrinsic porosity, long-range order, and light absorption. Since COFs can be constructed from a practically unlimited library of organic building blocks, these properties can be precisely tuned by choosing suitable linkers. Herein, we report the construction and use of a novel COF (FEAx-COF) photocatalyst, inspired by natural flavin cofactors. We show that the functionality of the alloxazine chromophore incorporated into the COF backbone is retained and study the effects of this heterogenization approach by comparison with similar molecular photocatalysts. We find that the integration of alloxazine chromophores into the framework significantly extends the absorption spectrum into the visible range, allowing for photocatalytic oxidation of benzylic alcohols to aldehydes even with low-energy visible light. In addition, the activity of the heterogeneous COF photocatalyst is less dependent on the chosen solvent, making it more versatile compared to molecular alloxazines. Finally, the use of oxygen as the terminal oxidant renders FEAx-COF a promising and “green” heterogeneous photocatalyst. In this manuscript, we report the development of a novel alloxazine COF inspired by naturally occurring flavin cofactors for photoredox catalysis.![]()
Collapse
Affiliation(s)
- Stefan Trenker
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Tanmay Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,Karlsruhe Institute of Technology (KIT), IFG - Institute for Functional Interfaces Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Laura M Poller
- Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Katharina I M Muggli
- Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Frederik Haase
- Karlsruhe Institute of Technology (KIT), IFG - Institute for Functional Interfaces Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,e-conversion Cluster of Excellence Lichtenbergstr. 4a, 85748 Garching Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany .,Department of Chemistry, University of Munich (LMU) Butenandtstr. 5-13 81377 Munich Germany.,Center for Nanoscience Schellingstr. 4 80799 Munich Germany.,e-conversion Cluster of Excellence Lichtenbergstr. 4a, 85748 Garching Germany
| |
Collapse
|