1
|
Sun Q, Chai L, Yang X, Zhang W, Li Z. Hollow tubular sea-urchin structure with high catalytic activity of NiCo 2Se 4@CS 2 cathodes for high-performance Al/S batteries. J Colloid Interface Sci 2025; 677:284-292. [PMID: 39146816 DOI: 10.1016/j.jcis.2024.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The shuttle effect of aluminum polysulfides (AlPSs) have been a source of concern for studying Al/S batteries. Due to the weak adsorption of CS composites, research on cathode materials for Al/S batteries has been delayed. As it is generally known that Al2S3 decomposition demands a large Gibbs free energy, this work has tried to reduce the Al2S3 decomposition potential energy. Herein, the Ni/Co bimetallic selenide reduces the energy barrier conversion and mitigates the polarization effects, while morphology control enables the storage and anchoring of S, alleviating the shuttle effect. Additionally, the intermediate products serve as single-atom catalysts, increasing the active sites, synergistically enhancing the ion diffusion kinetics. DFT calculations verify that NiCo2Se4 has a moderate Gibbs free energy change during the rate-limiting step of S reduction and the most robust adsorption energy to Al2S3. NiCo2Se4@CS2/Al has a remaining capacity of 135 mAh/g after 450 cycles (at 200 mA g-1), pioneering novel ideas for the development of Al/S batteries.
Collapse
Affiliation(s)
- Qiwen Sun
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Luning Chai
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Zhu X, Zhang H, Huang Y, He E, Shen Y, Huang G, Yuan S, Dong X, Zhang Y, Chen R, Zhang X, Wang Y. Recent progress of flexible rechargeable batteries. Sci Bull (Beijing) 2024:S2095-9273(24)00683-2. [PMID: 39389866 DOI: 10.1016/j.scib.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The rapid popularization of wearable electronics, soft robots and implanted medical devices has stimulated extensive research in flexible batteries, which are bendable, foldable, knittable, wearable, and/or stretchable. Benefiting from these distinct characteristics, flexible batteries can be seamlessly integrated into various wearable/implantable devices, such as smart home systems, flexible displays, and implantable sensors. In contrast to conventional lithium-ion batteries necessitating the incorporation of stringent current collectors and packaging layers that are typically rigid, flexible batteries require the flexibility of each component to accommodate diverse shapes or sizes. Accordingly, significant advancements have been achieved in the development of flexible electrodes, current collectors, electrolytes, and flexible structures to uphold superior electrochemical performance and exceptional flexibility. In this review, typical structures of flexible batteries are firstly introduced and classified into mono-dimensional, two-dimensional, and three-dimensional structures according to their configurations. Subsequently, five distinct types of flexible batteries, including flexible lithium-ion batteries, flexible sodium-ion batteries, flexible zinc-ion batteries, flexible lithium/sodium-air batteries, and flexible zinc/magnesium-air batteries, are discussed in detail according to their configurations, respectively. Meanwhile, related comprehensive analysis is introduced to delve into the fundamental design principles pertaining to electrodes, electrolytes, current collectors, and integrated structures for various flexible batteries. Finally, the developments and challenges of flexible batteries are summarized, offering viable guidelines to promote the practical applications in the future.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Haoran Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China
| | - Yun Shen
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shouyi Yuan
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China.
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Gao W, Song B, Zhang Q, He J, Wu Y. 3D Flower-like Nanospheres Constructed by Transition Metal Telluride Nanosheets as Sulfur Immobilizers for High-Performance Room-Temperature Na-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310225. [PMID: 38158336 DOI: 10.1002/smll.202310225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries hold immense promise as next-generation energy storage systems, owing to their exceptionally high theoretical capacity, abundant resources, eco-friendliness, and affordability. Nevertheless, their practical application is impeded by the shuttling effect of sodium polysulfides (NaPSs) and sluggish sulfur redox kinetics. In this study, an advanced strategy by designing 3D flower-like molybdenum telluride (MoTe2) as an efficient catalyst to promote sulfur redox for RT Na-S batteries is presented. The unique 3D flower-like MoTe2 effectively prevents NaPS shuttling and simultaneously offers abundant active catalytic sites facilitating polysulfide redox. Consequently, the obtained MoTe2/S cathode delivers an outstanding initial reversible capacity of 1015 mAh g-1 at 0.1 C, along with robust cycling stability of retaining 498 mAh g-1 at 1 C after 500 cycles. In addition, pouch cells are fabricated with the MoTe2 additive to deliver an ultrahigh initial discharge capacity of 890 mAh g-1 and remain stable over 40 cycles under practically necessary conditions, demonstrating the potential application in the commercialization of RT Na-S batteries.
Collapse
Affiliation(s)
- Wanjie Gao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Bingyan Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Qianyu Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
4
|
Cai G, Lv H, Zhang G, Liu D, Zhang J, Zhu J, Xu J, Kong X, Jin S, Wu X, Ji H. A Volcano Correlation between Catalytic Activity for Sulfur Reduction Reaction and Fe Atom Count in Metal Center. J Am Chem Soc 2024; 146:13055-13065. [PMID: 38695850 DOI: 10.1021/jacs.3c14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Sulfur reduction reaction (SRR) facilitates up to 16 electrons, which endows lithium-sulfur (Li-S) batteries with a high energy density that is twice that of typical Li-ion batteries. However, its sluggish reaction kinetics render batteries with only a low capacity and cycling life, thus remaining the main challenge to practical Li-S batteries, which require efficient electrocatalysts of balanced atom utilization and site-specific requirements toward highly efficient SRR, calling for an in-depth understanding of the atomic structural sensitivity for the catalytic active sites. Herein, we manipulated the number of Fe atoms in iron assemblies, ranging from single Fe atom to diatomic and triatomic Fe atom groupings, all embedded within a carbon matrix. This led to the revelation of a "volcano peak" correlation between SRR catalytic activity and the count of Fe atoms at the active sites. Utilizing operando X-ray absorption and X-ray diffraction spectroscopies, we observed that polysulfide adsorption-desorption and electrochemical conversion kinetics varied up and down with the incremental addition of even a single iron atom to the catalyst's metal center. Our results demonstrate that the metal center with exactly two iron atoms represents the optimal configuration, maximizing atom utility and adeptly handling the conversion of varied intermediate sulfur species, rendering the Li-S battery with a high areal capacity of 23.8 mAh cm-2 at a high sulfur loading of 21.8 mg cm-2. Our results illuminate the pivotal balance between atom utilization and site-specific requirements for optimal electrocatalytic performance in SRR and diverse electrocatalytic reactions.
Collapse
Affiliation(s)
- Guolei Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Haifeng Lv
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Guikai Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Danqing Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xianghua Kong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Song Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Hengxing Ji
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zhang Y, Wei D, Liu Y, Li S, Lei W, He X, Qiao M. Porous FeNi Prussian blue cubes derived carbon-based phosphides as superior sulfur hosts for high-performance lithium-sulfur batteries. NANOTECHNOLOGY 2024; 35:235701. [PMID: 38497442 DOI: 10.1088/1361-6528/ad2ee2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
In contrast to lithium-ion batteries, lithium-sulfur batteries have higher theoretical energy density and lower cost, so they would become competitive in the practical application. However, the shuttle effect of polysulfides and slow oxidation-reduction kinetics can degrade their electrochemical performance and cycle life. In this work, we have first developed the porous FeNi Prussian blue cubes as precursors. The calcination in different atmospheres was employed to make precursors convert into common pyrolysis products or novel carbon-based phosphides, and sulfides, labeled as FeNiP/A-C, FeNiP/A-P, and FeNiP/A-S. When these products serve as host materials in the sulfur cathode, the electrochemical performance of lithium-sulfur batteries is in the order of S@FeNiP/A-P > S@FeNiP/A-S > S@FeNiP/A-C. Specifically, the initial discharge capacity of S@FeNiP/A-P can reach 679.1 mAh g-1at 1 C, and the capacity would maintain 594.6 mAh g-1after 300 cycles. That is because the combination of carbon-based porous structure and numerous well-dispersed Ni2P/Fe2P active sites contribute FeNiP/A-P to obtain larger lithium-ion diffusion, lower resistance, stronger chemisorption, and more excellent catalytic effect than other samples. This work may deliver that metal-organic framework-derived carbon-based phosphides are more suitable to serve as sulfur hosts than carbon-based sulfides or common pyrolysis products for enhancing Li-S batteries' performance.
Collapse
Affiliation(s)
- Yulong Zhang
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, People's Republic of China
| | - Dan Wei
- College of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an 712046, People's Republic of China
| | - Yuelin Liu
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, People's Republic of China
| | - Shunan Li
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, People's Republic of China
| | - Wanying Lei
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, People's Republic of China
| | - Xiaowei He
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Condition, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Mingtao Qiao
- College of Materials Science and Engineering, Xi'an University of Architecture & Technology, Xian 710055, Shaanxi, People's Republic of China
- College of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an 712046, People's Republic of China
| |
Collapse
|
6
|
Wu M, Xing Z, Zhu R, Liu X, Feng Y, Shao W, Yan R, Yin B, Li S. 2D Nano-Channeled Molybdenum Compounds for Accelerating Interfacial Polysulfides Catalysis in Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306991. [PMID: 37939298 DOI: 10.1002/smll.202306991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The shuttle effect, which causes the loss of active sulfur, passivation of lithium anode, and leads to severe capacity attenuation, is currently the main bottleneck for lithium-sulfur batteries. Recent studies have disclosed that molybdenum compounds possess exceptional advantages as a polar substrate to immobilize and catalyze lithium polysulfide such as high conductivity and strong sulfiphilicity. However, these materials show incomplete contact with sulfur/polysulfides, which causes uneven redox conversion of sulfur and results in poor rate performance. Herein, a new type of 2D nano-channeled molybdenum compounds (2D-MoNx) via the 2D organic-polyoxometalate superstructure for accelerating interfacial polysulfide catalysis toward high-performance lithium-sulfur batteries is reported. The 2D-MoNx shows well-interlinked nano-channels, which increase the reactive interface and contact surface with polysulfides. Therefore, the battery equipped with 2D-MoNx displays a high discharge capacity of 912.7 mAh g-1 at 1 C and the highest capacity retention of 523.7 mAh g-1 after 300 cycles. Even at the rate of 2 C, the capacity retention can be maintained at 526.6 mAh g-1 after 300 cycles. This innovative nano-channel and interfacial design of 2D-MoNx provides new nanostructures to optimize the sulfur redox chemistry and eliminate the shuttle effect of polysulfides.
Collapse
Affiliation(s)
- Min Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yifan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Chen K, Kim GC, Kim C, Yadav S, Lee IH. Engineering core-shell hollow-sphere Fe 3O 4@FeP@nitrogen-doped-carbon as an advanced bi-functional electrocatalyst for highly-efficient water splitting. J Colloid Interface Sci 2024; 657:684-694. [PMID: 38071817 DOI: 10.1016/j.jcis.2023.11.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Given the rapidly increasing energy demand and environmental pollution, to achieve energy conservation and emission reduction, hydrogen production has emerged as a promising alternative to traditional fossil fuels because of its high gravimetric energy density, and renewable and environmentally friendly characteristics. Herein, a core-shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon (labeled as H-Fe3O4@FeP@NC) with a dual-interface, novel morphology, and superior conductivity is prepared as an advanced bi-functional electrocatalyst for electrochemical overall water splitting using a collaborative strategy comprising of facile self-assembly and phosphating. The prepared catalyst exhibits superior electrocatalytic activity compared to H-Fe3O4@NC and H-Fe3O4 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Additionally, the overpotential of H-Fe3O4@FeP@NC for OER/HER (258/165 mV at 10 mA/cm2) is significantly lower than those of H-Fe3O4@NC (274/209 mV) and H-Fe3O4 (287/213 mV) at 10 mA/cm2. Meanwhile, the as-synthesized H-Fe3O4@FeP@NC, as an electrode pair, displays a low cell voltage of 1.69 V at 10 mA/cm2 and excellent stability after 100 h, indicating its practical application for overall water splitting. This work presents a practical and economical strategy toward the fabrication of catalyst for efficient water splitting and fuel cell.
Collapse
Affiliation(s)
- Kai Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyu-Cheol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chiyeop Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunny Yadav
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Xing H, Niu Y, Wang J, Liu Y, Yao X, Xu Y. Embedding cobalt (II, III) oxide nanoparticles into nitrogen-doped carbon nanotubes-grafted hollow polyhedrons as sulfur hosts for ultralong-life lithium-sulfur batteries. J Colloid Interface Sci 2023; 649:832-843. [PMID: 37390531 DOI: 10.1016/j.jcis.2023.06.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
The sluggish reaction kinetics and unfavorable shuttling effect are regarded as obstacles to the practical application of lithium-sulfur (Li-S) batteries. To resolve these inherent drawbacks, we synthesized novel multifunctional Co3O4@NHCP/CNT as the cathode materials consisting of carbon nanotubes (CNTs)-grafted N-doped hollow carbon polyhedrons (NHCP) embedded with cobalt (II, III) oxide (Co3O4) nanoparticles. The results indicate that the NHCP and interconnected CNTs could provide favorable channels for electron/ion transport and physically restrict the diffusion of lithium polysulfides (LiPSs). Furthermore, N doping and in-situ Co3O4 embedding could endow the carbon matrix with strong chemisorption and effective electrocatalytic activity toward LiPSs, thus prominently promoting the sulfur redox reaction. Benefiting from these synergistic effects, the Co3O4@NHCP/CNT electrode exhibits a high initial capacity of 1322.1 mAh/g at 0.1 C, and a capacity retention of 710.4 mAh/g after 500 cycles at 1 C. Impressively, even at a relatively high current density of 4 C, the Co3O4@NHCP/CNT electrode achieves a high capacity of 653.4 mAh/g and outstanding long-term cycle stability for 1000 cycles with a low decay rate of 0.035% per cycle. Hence, the design of N-doped CNTs-grafted hollow carbon polyhedrons coupled with transition metal oxides would provide effective promising perspective for developing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Haiyang Xing
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yao Niu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xianghua Yao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
9
|
Ren X, Wang Q, Pu Y, Sun Q, Sun W, Lu L. Synergizing Spatial Confinement and Dual-Metal Catalysis to Boost Sulfur Kinetics in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304120. [PMID: 37467076 DOI: 10.1002/adma.202304120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Sluggish kinetics and parasitic shuttling reactions severely impede lithium-sulfur (Li-S) battery operation; resolving these issues can enhance the capacity retention and cyclability of Li-S cells. Therefore, an effective strategy featuring core-shell-structured Co/Ni bimetal-doped metal-organic framework (MOF)/sulfur nanoparticles is reported herein for addressing these problems; this approach offers unprecedented spatial confinement and abundant catalytic sites by encapsulating sulfur within an ordered architecture. The protective shells exhibit long-term stability, ion screening, high lithium-polysulfide adsorption capability, and decent multistep catalytic conversion. Additionally, the delocalized electrons of the MOF endow the cathodes with superior electron/lithium-ion transfer ability. Via multiple physicochemical and theoretical analysis, the resulting synergistic interactions are proved to significantly promote interfacial charge-transfer kinetics, facilitate sulfur conversion dynamics, and inhibit shuttling. The assembled Li-S batteries deliver a stable, highly reversible capacity with marginal decay (0.075% per cycle) for 400 cycles at 0.2 C, a pouch-cell areal capacity of 3.8 mAh cm-2 for 200 cycles under a high sulfur loading, as well as remarkably improved pouch-cell performance.
Collapse
Affiliation(s)
- Xiaoyan Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Qin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yulai Pu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
10
|
Liu G, Zeng Q, Wu Q, Tian S, Sun X, Wang D, Li X, Wei W, Wu T, Zhang Y, Sheng Y, Tao K, Xie E, Zhang Z. Manipulating Sulfur Conversion Kinetics through Interfacial Built-In Electric Field Enhanced Bidirectional Mott-Schottky Electrocatalysts in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39384-39395. [PMID: 37555537 DOI: 10.1021/acsami.3c08088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Efficient electrocatalysts and catalytic mechanisms remain a pressing need in Li-S electrochemistry to address lithium polysulfide (LiPS) shuttling and enhance conversion kinetics. This study presents the development of multifunctional VO2@rGO heterostructures, incorporating interfacial built-in electric field (BIEF) enhancement, as a Mott-Schottky electrocatalyst for Li-S batteries. Electrochemical experiments and theoretical analysis demonstrate that the interfacial BIEF between VO2 and rGO induces self-driven charge redistribution, resulting in accelerated charge transport rates, enhanced LiPS chemisorption, reduced energy barriers for Li2S nucleation/decomposition, and improved Li-ion diffusion behavior. The Mott-Schottky electrocatalyst, combining the strengths of VO2's anchoring ability, rGO's metallic conductivity, and BIEF's optimized charge transport, exhibits an outstanding "trapping-conversion" effect. The modified Li-S battery with a VO2@rGO-modified separator achieves a highly reversible capacity of 558.0 mAh g-1 at 2 C over 600 cycles, with an average decay rate of 0.048% per cycle. This research offers valuable insights into the design of Mott-Schottky electrocatalysts and their catalytic mechanisms, advancing high-efficiency Li-S batteries and other multielectron energy storage and conversion devices.
Collapse
Affiliation(s)
- Guo Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qi Zeng
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Qingfeng Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Shuhao Tian
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Xiao Sun
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Di Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Xijuan Li
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Tianyu Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuhao Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yanbin Sheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Kun Tao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li 2 S 2 -Li 2 S Reduction Catalysis in Ferromagnetic Atoms-based Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2023; 62:e202215414. [PMID: 36321878 PMCID: PMC10107143 DOI: 10.1002/anie.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accelerating insoluble Li2 S2 -Li2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2 S2 . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2 S2 -Li2 S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N4 -based cathodes exhibit the fastest deposition kinetics of Li2 S (226 mAh g-1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2 S2 -Li2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhenyang Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of ChemistryTechnische Universität BerlinBerlin10623Germany
| |
Collapse
|
12
|
Qiu H, Wang T, Lv W, Liu Q, Huang J. Three-dimensional carbon foam decorated with SnO2 as multifunctional host for lithium sulfur batteries. J Colloid Interface Sci 2023; 630:106-114. [DOI: 10.1016/j.jcis.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
13
|
Wang Y, Zhao J, Wu F, Wei S, Cao S, Yang Y, Li J. An ordered conductive Ni-CAT nanorods array as all-round polysulfide regulator for lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li
2
S
2
−Li
2
S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Menghao Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhao Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xikui Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Bo Yin
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Shuang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Chemistry Technische Universität Berlin Berlin 10623 Germany
| |
Collapse
|
15
|
Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fish and other seafood products are essential dietary components that are highly appreciated and consumed worldwide. However, the high perishability of these products has driven the development of a wide range of processing, preservation, and analytical techniques. This development has been accelerated in recent years with the advent of the fourth industrial revolution (Industry 4.0) technologies, digitally transforming almost every industry, including the food and seafood industry. The purpose of this review paper is to provide an updated overview of recent thermal and nonthermal processing and preservation technologies, as well as advanced analytical techniques used in the seafood industry. A special focus will be given to the role of different Industry 4.0 technologies to achieve smart seafood manufacturing, with high automation and digitalization. The literature discussed in this work showed that emerging technologies (e.g., ohmic heating, pulsed electric field, high pressure processing, nanotechnology, advanced mass spectrometry and spectroscopic techniques, and hyperspectral imaging sensors) are key elements in industrial revolutions not only in the seafood industry but also in all food industry sectors. More research is still needed to explore how to harness the Industry 4.0 innovations in order to achieve a green transition toward more profitable and sustainable food production systems.
Collapse
|