1
|
Yu W, Xu Y, Liu Z, Luo F, Sun X, Li X, Duan F, Liang X, Wu L, Xu T. Bioadhesive-Inspired Ionomer for Membrane Electrode Assembly Interface Reinforcement in Fuel Cells. J Am Chem Soc 2024; 146:22590-22599. [PMID: 39082835 DOI: 10.1021/jacs.4c06961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 °C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm-2 for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h-1). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.
Collapse
Affiliation(s)
- Weisheng Yu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhiru Liu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fen Luo
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xu Sun
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojiang Li
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fanglin Duan
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232001, China
| | - Liang Wu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
3
|
Ayaz S, Yao ZY, Chen YJ, Yu HY. Preparation of poly(arylene ether ketone) based anion exchange membrane with pendant pyrimidinium and pyridazinium cation derivatives for alkaline fuel cell. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Zaman S, Wang M, Liu H, Sun F, Yu Y, Shui J, Chen M, Wang H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Liang M, Peng J, Cao K, Shan C, Liu Z, Wang P, Hu W, Liu B. Multiply quaternized poly(phenylene oxide)s bearing β-cyclodextrin pendants as “assisting moiety” for high-performance anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Jiang T, Wu C, Zhou Y, Cheng S, Yang S, Wei H, Ding Y, Wu Y. Highly stable poly(p-quaterphenylene alkylene)-based anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Liu J, Gao L, Di M, Hu L, Sun X, Wu X, Jiang X, Dai Y, Yan X, He G. Low boiling point solvent-soluble, highly conductive and stable poly (ether phenylene piperidinium) anion exchange membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022; 51:9620-9693. [DOI: 10.1039/d2cs00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The key components, working management, and operating techniques of anion-exchange membrane water electrolyzers and fuel cells are reviewed for the first time.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
| | - Peng Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|