1
|
Xu K, Hao Y, Gao H, Feng H, Chen J, Zhao R, Huang Y. Engineering Peptide-Based Molecular Baits for Targeted Fishing and Protein Profiling of Exosomes as a Liquid Biopsy for Gastrointestinal Adenocarcinoma. Anal Chem 2025; 97:741-748. [PMID: 39810339 DOI: 10.1021/acs.analchem.4c05186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
High-performance isolation of exosomes as a promising liquid biopsy target is of great importance for both fundamental research and clinical applications. This is, however, challenged by the prevalent heterogeneity of exosomes and the highly complex nature of biosamples. Here, we introduce the use of a CD81-targeting peptide as a building block for tailoring molecular baits for exosome isolation and payload analysis in clinical biofluids. To explore the full potential of multivalent interactions, peptide-functionalized affinity interfaces were covalently engineered with varied assembling topology, flexibility, and local density of the recognition motif. Capable of best fitting the surface conformation of CD81 on highly curved exosome membranes, a dual-layered exosome capture affinity interface (Exo-PepTrap2) with tandem bivalent peptide decoration outperforms the monolayered and the branched multivalent architectures. Enabled by the multivalency-enhanced affinity reaction and antifouling ability, Exo-PepTrap2 achieved a high yield and purity for targeted fishing of exosomes in complex cell culture media and clinical urine samples. By integration of Exo-PepTrap2 isolation with mass spectrometry-based proteomic profiling, differentially expressed proteins were efficiently identified in harvested exosomes as potential biomarkers for gastrointestinal adenocarcinoma. This CD81-targeted tandem peptide-functionalized affinity platform provides a new viewpoint for tailoring multivalency-based affinity interfaces and a versatile tool to explore molecular information in exosomes for precise medicine.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Hao
- Department of Geriatrics, Peking University Third Hospital, Beijing 100191, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li HD, Chen YQ, Li Y, Wei X, Wang SY, Cao Y, Wang R, Wang C, Li JY, Li JY, Ding HM, Yang T, Wang JH, Mao C. Harnessing virus flexibility to selectively capture and profile rare circulating target cells for precise cancer subtyping. Nat Commun 2024; 15:5849. [PMID: 38992001 PMCID: PMC11239949 DOI: 10.1038/s41467-024-50064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
The effective isolation of rare target cells, such as circulating tumor cells, from whole blood is still challenging due to the lack of a capturing surface with strong target-binding affinity and non-target-cell resistance. Here we present a solution leveraging the flexibility of bacterial virus (phage) nanofibers with their sidewalls displaying target circulating tumor cell-specific aptamers and their ends tethered to magnetic beads. Such flexible phages, with low stiffness and Young's modulus, can twist and adapt to recognize the cell receptors, energetically enhancing target cell capturing and entropically discouraging non-target cells (white blood cells) adsorption. The magnetic beads with flexible phages can isolate and count target cells with significant increase in cell affinity and reduction in non-target cell absorption compared to magnetic beads having rigid phages. This differentiates breast cancer patients and healthy donors, with impressive area under the curve (0.991) at the optimal detection threshold (>4 target cells mL-1). Immunostaining of captured circulating tumor cells precisely determines breast cancer subtypes with a diagnostic accuracy of 91.07%. Our study reveals the power of viral mechanical attributes in designing surfaces with superior target binding and non-target anti-fouling.
Collapse
Affiliation(s)
- Hui-Da Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Yan Li
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Si-Yi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ying Cao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Rui Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Cong Wang
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Jing-Yue Li
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Jian-Yi Li
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China.
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Lu C, Meng C, Li Y, Yuan J, Ren X, Gao L, Su D, Cao K, Cui M, Yuan Q, Gao X. A probe for NIR-II imaging and multimodal analysis of early Alzheimer's disease by targeting CTGF. Nat Commun 2024; 15:5000. [PMID: 38866763 PMCID: PMC11169542 DOI: 10.1038/s41467-024-49409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
To date, earlier diagnosis of Alzheimer's disease (AD) is still challenging. Recent studies revealed the elevated expression of connective tissue growth factor (CTGF) in AD brain is an upstream regulator of amyloid-beta (Aβ) plaque, thus CTGF could be an earlier diagnostic biomarker of AD than Aβ plaque. Herein, we develop a peptide-coated gold nanocluster that specifically targets CTGF with high affinity (KD ~ 21.9 nM). The probe can well penetrate the blood-brain-barrier (BBB) of APP/PS1 transgenic mice at early-stage (earlier than 3-month-old) in vivo, allowing non-invasive NIR-II imaging of CTGF when there is no appearance of Aβ plaque deposition. Notably, this probe can also be applied to measuring CTGF on postmortem brain sections by multimodal analysis, including fluorescence imaging, peroxidase-like chromogenic imaging, and ICP-MS quantitation, which enables distinguishment between the brains of AD patients and healthy people. This probe possesses great potential for precise diagnosis of earlier AD before Aβ plaque formation.
Collapse
Affiliation(s)
- Cao Lu
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Cong Meng
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jinling Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xiaojun Ren
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Liang Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kai Cao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China.
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, P. R. China.
| |
Collapse
|
4
|
Park HW, Lee CE, Kim S, Jeong WJ, Kim K. Ex Vivo Peptide Decoration Strategies on Stem Cell Surfaces for Augmenting Endothelium Interaction. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:327-339. [PMID: 37830185 DOI: 10.1089/ten.teb.2023.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ischemic vascular diseases remain leading causes of disability and death. Although various clinical therapies have been tried, reperfusion injury is a major issue, occurring when blood recirculates at the damaged lesion. As an alternative approach, cell-based therapy has emerged. Mesenchymal stem cells (MSCs) are attractive cellular candidates due to their therapeutic capacities, including differentiation, safety, angiogenesis, and tissue repair. However, low levels of receptors/ligands limit targeted migration of stem cells. Thus, it is important to improve homing efficacy of transplanted MSCs toward damaged endothelium. Among various MSC modulations, ex vivo cell surface engineering could effectively augment homing efficiency by decorating MSC surfaces with alternative receptors/ligands, thereby facilitating intercellular interactions with the endothelium. Especially, exogenous decoration of peptides onto stem cell surfaces could provide appropriate functional signaling moieties to achieve sufficient MSC homing. Based on their protein-like functionalities, high modularity in molecular design, and high specific affinities and multivalency to target receptors, peptides could be representative surface-presentable moieties. Moreover, peptides feature a mild synthetic process, enabling precise control of amino acid composition and sequence. Such ex vivo stem cell surface engineering could be achieved primarily by hydrophobic interactions of the cellular bilayer with peptide-conjugated anchor modules and by covalent conjugation between peptides and available compartments in membranes. To this end, this review provides an overview of currently available peptide-mediated, ex vivo stem cell surface engineering strategies for enhancing MSC homing efficiency by facilitating interactions with endothelial cells. Stem cell surface engineering techniques using peptide-based bioconjugates have the potential to revolutionize current vascular disease treatments while addressing their technical limitations.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kim D, Javius-Jones K, Mamidi N, Hong S. Dendritic nanoparticles for immune modulation: a potential next-generation nanocarrier for cancer immunotherapy. NANOSCALE 2024; 16:10208-10220. [PMID: 38727407 DOI: 10.1039/d4nr00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Immune activation, whether occurring from direct immune checkpoint blockade or indirectly as a result of chemotherapy, is an approach that has drastically impacted the way we treat cancer. Utilizing patients' own immune systems for anti-tumor efficacy has been translated to robust immunotherapies; however, clinically significant successes have been achieved in only a subset of patient populations. Dendrimers and dendritic polymers have recently emerged as a potential nanocarrier platform that significantly improves the therapeutic efficacy of current and next-generation cancer immunotherapies. In this paper, we highlight the recent progress in developing dendritic polymer-based therapeutics with immune-modulating properties. Specifically, dendrimers, dendrimer hybrids, and dendronized copolymers have demonstrated promising results and are currently in pre-clinical development. Despite their early stage of development, these nanocarriers hold immense potential to make profound impact on cancer immunotherapy and combination therapy. This overview provides insights into the potential impact of dendrimers and dendron-based polymers, offering a preview of their potential utilities for various aspects of cancer treatment.
Collapse
Affiliation(s)
- DaWon Kim
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, School of Pharmacy, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI, USA
- Lachman Institute for Drug Development, University of Wisconsin-Madison, Madison, WI, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
6
|
Park I, Kim HJ, Shin J, Jung YJ, Lee D, Lim J, Park JM, Park JW, Kim J. AFM Imaging Reveals MicroRNA-132 to be a Positive Regulator of Synaptic Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306630. [PMID: 38493494 PMCID: PMC11077659 DOI: 10.1002/advs.202306630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Indexed: 03/19/2024]
Abstract
The modification of synaptic and neural connections in adults, including the formation and removal of synapses, depends on activity-dependent synaptic and structural plasticity. MicroRNAs (miRNAs) play crucial roles in regulating these changes by targeting specific genes and regulating their expression. The fact that somatic and dendritic activity in neurons often occurs asynchronously highlights the need for spatial and dynamic regulation of protein synthesis in specific milieu and cellular loci. MicroRNAs, which can show distinct patterns of enrichment, help to establish the localized distribution of plasticity-related proteins. The recent study using atomic force microscopy (AFM)-based nanoscale imaging reveals that the abundance of miRNA(miR)-134 is inversely correlated with the functional activity of dendritic spine structures. However, the miRNAs that are selectively upregulated in potentiated synapses, and which can thereby support prospective changes in synaptic efficacy, remain largely unknown. Using AFM force imaging, significant increases in miR-132 in the dendritic regions abutting functionally-active spines is discovered. This study provides evidence for miR-132 as a novel positive miRNA regulator residing in dendritic shafts, and also suggests that activity-dependent miRNAs localized in distinct sub-compartments of neurons play bi-directional roles in controlling synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
- Ikbum Park
- Technical Support Center for Chemical IndustryKorea Research Institute of Chemical Technology (KRICT)Ulsan44412Republic of Korea
| | - Hyun Jin Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Juyoung Shin
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yu Jin Jung
- Center for Specialty ChemicalsKorea Research Institute of Chemical Technology (KRICT)Ulsan44412Republic of Korea
| | - Donggyu Lee
- Division of Electronics and Information SystemDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Ji‐seon Lim
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Jong Mok Park
- Technical Support Center for Chemical IndustryKorea Research Institute of Chemical Technology (KRICT)Ulsan44412Republic of Korea
| | - Joon Won Park
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Joung‐Hun Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute of Convergence ScienceYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
7
|
Kim JE, Kang JH, Kwon WH, Lee I, Park SJ, Kim CH, Jeong WJ, Choi JS, Kim K. Self-assembling biomolecules for biosensor applications. Biomater Res 2023; 27:127. [PMID: 38053161 PMCID: PMC10696764 DOI: 10.1186/s40824-023-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
8
|
Dufossez R, Krafft MP, Ursuegui S, Mosser M, Mouftakhir S, Pernod K, Chaubet G, Ryckelynck M, Wagner A. Microfluidic Droplet Stabilization via SPAAC Promoted Antibody Conjugation at the Water/Oil Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45498-45505. [PMID: 37704020 DOI: 10.1021/acsami.3c10655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Droplet-based microfluidics is leading the development of miniaturized, rapid, and sensitive version of enzyme-linked immunosorbent assays (ELISAs), a central method for protein detection. These assays involve the use of a functionalized surface able to selectively capture the desired analyte. Using the droplet's oil water interface as a capture surface requires designing custom-perfluorinated fluorosurfactants bearing azide-containing polar groups, which spontaneously react when forming the droplet with strain-alkyne-functionalized antibodies solubilized in the aqueous phase. In this article, we present our research on the influence of the structure of surfactant's hydrophilic heads on the efficiency of SPAAC functionalization and on the effect of this antibody grafting process on droplet stability. We have shown that while short linkers lead to high grafting efficiency, long linkers lead to high stability, and that an intermediate size is required to balance both parameters. In the described family of surfactants, the optimal structure proved to be a PEG4 linker connecting a polar di-azide head and a per-fluoropolyether tail (Krytox). We also found that grafting an increasing amount of antibody, thus increasing interface coverage, increases droplet stability. It thus appears that such a bi-partite system with a reactive fluoro-surfactant in the oil phase and reactive antibody counterpart in the aqueous phase gives access in situ to novel surfactant construct providing unexplored interface structures and droplet functionality.
Collapse
Affiliation(s)
- Robin Dufossez
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Marie-Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 67034 Strasbourg, France
| | - Sylvain Ursuegui
- MicroOmix, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Michel Mosser
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Safae Mouftakhir
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
- CNRS, Architecture et Réactivité de l'ARN (UPR 9002), University of Strasbourg, 67000 Strasbourg, France
| | - Ketty Pernod
- MicroOmix, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Michael Ryckelynck
- CNRS, Architecture et Réactivité de l'ARN (UPR 9002), University of Strasbourg, 67000 Strasbourg, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
9
|
Ko S, Kim JY, Park JY, Jung YJ, Choi MJ, Jin KS, Kim Y, Lim YB, Jeong WJ. Modulating the folding and binding of peptides using a stimuli-responsive molecular tweezer. Chem Sci 2023; 14:9600-9607. [PMID: 37712040 PMCID: PMC10498507 DOI: 10.1039/d3sc03758d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023] Open
Abstract
This study presents the development of a β-hairpin (tryptophan zipper, Trpzip)-based molecular tweezer (MT) that can control the folding and binding of α-helical peptides. When an α-helix isolated from the p53 protein was conjugated with Trpzip in an optimized macrocyclic structure, the folded β-hairpin stabilized the helix conformation through the side chain-to-side chain stapling strategy, which notably enhanced target (hDM2) affinity of the peptide. On the other hand, the helicity and binding affinity were significantly reduced when the hairpin was unfolded by a redox stimulus. This stimulus-responsive property was translated into the effective capture and release of model multivalent biomaterials, hDM2-gold nanoparticle conjugates. Since numerous protein interactions are mediated by α-helical peptides, these results suggest that the β-hairpin-based MT holds great potential to be utilized in various biomedical applications, such as protein interaction inhibition and cancer biomarker (e.g., circulating tumor cells and exosomes) detection.
Collapse
Affiliation(s)
- Sooho Ko
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Republic of Korea
| | - Joo-Young Kim
- Department of Biological Sciences and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University Seoul 02841 Republic of Korea
| | - You-Jin Jung
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Republic of Korea
| | - Min-Jae Choi
- Department of Chemical & Biochemical Engineering, Dongguk University Seoul 06420 Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Korea University Seoul 02841 Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University Incheon 22212 Republic of Korea
- Department of Biological Engineering, Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
10
|
Jeong WJ, Bu J, Mickel P, Han Y, Rawding PA, Wang J, Kang H, Hong H, Král P, Hong S. Dendrimer-Peptide Conjugates for Effective Blockade of the Interactions between SARS-CoV-2 Spike Protein and Human ACE2 Receptor. Biomacromolecules 2023; 24:141-149. [PMID: 36562668 PMCID: PMC9811402 DOI: 10.1021/acs.biomac.2c01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has threatened the stability of global healthcare, which is becoming an endemic issue. Despite the development of various treatment strategies to fight COVID-19, the currently available treatment options have shown varied efficacy. Herein, we have developed an avidity-based SARS-CoV-2 antagonist using dendrimer-peptide conjugates (DPCs) for effective COVID-19 treatment. Two different peptide fragments obtained from angiotensin-converting enzyme 2 (ACE2) were integrated into a single sequence, followed by the conjugation to poly(amidoamine) (PAMAM) dendrimers. We hypothesized that the strong multivalent binding avidity endowed by dendrimers would help peptides effectively block the interaction between SARS-CoV-2 and ACE2, and this antagonist effect would be dependent upon the generation (size) of the dendrimers. To assess this, binding kinetics of the DPCs prepared from generation 4 (G4) and G7 PAMAM dendrimers to spike protein of SARS-CoV-2 were quantitatively measured using surface plasmon resonance. The larger dendrimer-based DPCs exhibited significantly enhanced binding strength by 3 orders of magnitude compared to the free peptides, whereas the smaller one showed a 12.8-fold increase only. An in vitro assay using SARS-CoV-2-mimicking microbeads also showed the improved SARS-CoV-2 blockade efficiency of the G7-peptide conjugates compared to G4. In addition, the interaction between the DPCs and SARS-CoV-2 was analyzed using molecular dynamics (MD) simulation, providing an insight into how the dendrimer-mediated multivalent binding effect can enhance the SARS-CoV-2 blockade. Our findings demonstrate that the DPCs having strong binding to SARS-CoV-2 effectively block the interaction between ACE2 and SARS-CoV-2, providing a potential as a high-affinity drug delivery system to direct anti-COVID payloads to the virus.
Collapse
Affiliation(s)
- Woo-jin Jeong
- Pharmaceutical Sciences Division, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, KOREA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, KOREA
| | - Philip Mickel
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Piper A Rawding
- Pharmaceutical Sciences Division, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Jianxin Wang
- Wisconsin Center for NanoBioSystems, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Hanbit Kang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuholgu, Incheon 22212, KOREA
| | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, KOREA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, The University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, KOREA
| |
Collapse
|
11
|
Kim S, Kim K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. BIOMATERIALS ADVANCES 2022; 140:213059. [PMID: 35961186 DOI: 10.1016/j.bioadv.2022.213059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Once administrated, intercellular adhesion to recognize and/or arrest target cells is essential for specific treatments, especially for cancer or tumor. However, immune cells administrated into the tumor-microenvironment could lose their intrinsic functionalities such as target recognition ability, resulting in an ineffective cancer immunotherapy. Various manipulation techniques for decorating functional moieties onto cell surface and enhancing target recognition have been developed. A hydrophobic interaction-mediated ex-vivo cell surface engineering using lipid-based biomaterials could be a state-of-the-art engineering technique that could achieve high-efficiency cell surface modification by a single method without disturbance of intrinsic characteristics of cells. In this regard, this review provides design principles for the development of lipid-based biomaterials with a linear structure of lipid, polyethylene glycol, and functional group, strategies for the synthesis process, and their practical applications in biomedical engineering. Especially, we provide new insights into the development of a novel surface coating techniques for natural killer (NK) cells with engineering decoration of cancer targeting moieties on their cell surfaces. Among immune cells, NK cells are interesting cell population for substituting T cells because of their excellent safety and independent anticancer efficacy. Thus, optimal strategies to select cancer-type-specific targeting moieties and present them onto the surface of immune cells (especially, NK cells) using lipid-based biomaterials could provide additional tools to capture cancer cells for developing novel immune cell therapy products. Enhanced anticancer efficacies by surface-engineered NK cells have been demonstrated both in vitro and in vivo. Therefore, it could be speculated that recent progresses in cell surface modification technology via lipid-based biomaterials could strengthen immune surveillance and immune synapses for utilization in a next-generation cancer immunotherapy, beyond currently available genetic engineering tool such as chimeric antigen receptor-mediated immune cell modulation.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Bu J, Jeong WJ, Jafari R, Kubiatowicz LJ, Nair A, Poellmann MJ, Hong RS, Liu EW, Owen RH, Rawding PA, Hopkins CM, Kim D, George DJ, Armstrong AJ, Král P, Wang AZ, Bruce J, Zhang T, Kimple RJ, Hong S. Bimodal liquid biopsy for cancer immunotherapy based on peptide engineering and nanoscale analysis. Biosens Bioelectron 2022; 213:114445. [PMID: 35679646 DOI: 10.1016/j.bios.2022.114445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Despite its high potential, PD-L1 expressed by tumors has not been successfully utilized as a biomarker for estimating treatment responses to immunotherapy. Circulating tumor cells (CTCs) and tumor-derived exosomes that express PD-L1 can potentially be used as biomarkers; however, currently available assays lack clinically significant sensitivity and specificity. Here, a novel peptide-based capture surface is developed to effectively isolate PD-L1-expressing CTCs and exosomes from human blood. For the effective targeting of PD-L1, this study integrates peptide engineering strategies to enhance the binding strength and specificity of a β-hairpin peptide derived from PD-1 (pPD-1). Specifically, this study examines the effect of poly(ethylene glycol) spacers, the secondary peptide structure, and modification of peptide sequences (e.g., removal of biologically redundant amino acid residues) on capture efficiency. The optimized pPD-1 configuration captures PD-L1-expressing tumor cells and tumor-derived exosomes with 1.5-fold (p = 0.016) and 1.2-fold (p = 0.037) higher efficiencies, respectively, than their whole antibody counterpart (aPD-L1). This enhanced efficiency is translated into more clinically significant detection of CTCs (1.9-fold increase; p = 0.035) and exosomes (1.5-fold increase; p = 0.047) from patients' baseline samples, demonstrating stronger correlation with patients' treatment responses. Additionally, we confirmed that the clinical accuracy of our system can be further improved by co-analyzing the two biomarkers (bimodal CTC/exosome analysis). These data demonstrate that pPD-1-based capture is a promising approach for capturing PD-L1-expressing CTCs and exosomes, which can be used as a reliable biomarker for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Woo-Jin Jeong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Roya Jafari
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA
| | - Luke J Kubiatowicz
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Ashita Nair
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Michael J Poellmann
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Rachel S Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Elizabeth W Liu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Randall H Owen
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Piper A Rawding
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Caroline M Hopkins
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA; Department of Physics, Department of Pharmaceutical Sciences, University of Illinois at Chicago, 845 W Taylar St, Chicage, IL, 60607, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justine Bruce
- Department of Human Oncology, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA
| | - Tian Zhang
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; Department of Biomedical Engineering, The University of Wisconsin-Madison, 1550 Engineering Dr., Madison, WI, 53705, USA; Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Vafapour Z. Cost-Effective Bull's Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation. SENSORS (BASEL, SWITZERLAND) 2022; 22:2892. [PMID: 35458876 PMCID: PMC9029594 DOI: 10.3390/s22082892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 05/03/2023]
Abstract
Theoretical and numerical studies were conducted on plasmonic interactions at a polarization-independent semiconductor-dielectric-semiconductor (SDS) sandwiched layer design and a brief review of the basic theory model was presented. The potential of bull's eye aperture (BEA) structures as device elements has been well recognized in multi-band structures. In addition, the sub-terahertz (THz) band (below 1 THz frequency regime) is utilized in communications and sensing applications, which are in high demand in modern technology. Therefore, we produced theoretical and numerical studies for a THz-absorbing-metasurface BEA-style design, with N-beam absorption peaks at a sub-THz band, using economical and commercially accessible materials, which have a low cost and an easy fabrication process. Furthermore, we applied the Drude model for the dielectric function of semiconductors due to its ability to describe both free-electron and bound systems simultaneously. Associated with metasurface research and applications, it is essential to facilitate metasurface designs to be of the utmost flexible properties with low cost. Through the aid of electromagnetic (EM) coupling using multiple semiconductor ring resonators (RRs), we could tune the number of absorption peaks between the 0.1 and 1.0 THz frequency regime. By increasing the number of semiconductor rings without altering all other parameters, we found a translation trend of the absorption frequencies. In addition, we validated our spectral response results using EM field distributions and surface currents. Here, we mainly discuss the source of the N-band THz absorber and the underlying physics of the multi-beam absorber designed structures. The proposed microstructure has ultra-high potentials to utilize in high-power THz sources and optical biomedical sensing and detection applications based on opto-electronics technology based on having multi-band absorption responses.
Collapse
Affiliation(s)
- Zohreh Vafapour
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; or or
- Department of Physics, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
14
|
Cytochalasin B Treatment and Osmotic Pressure Enhance the Production of Extracellular Vesicles (EVs) with Improved Drug Loading Capacity. NANOMATERIALS 2021; 12:nano12010003. [PMID: 35009953 PMCID: PMC8746776 DOI: 10.3390/nano12010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have been highlighted as novel drug carriers due to their unique structural properties and intrinsic features, including high stability, biocompatibility, and cell-targeting properties. Although many efforts have been made to harness these features to develop a clinically effective EV-based therapeutic system, the clinical translation of EV-based nano-drugs is hindered by their low yield and loading capacity. Herein, we present an engineering strategy that enables upscaled EV production with increased loading capacity through the secretion of EVs from cells via cytochalasin-B (CB) treatment and reduction of EV intravesicular contents through hypo-osmotic stimulation. CB (10 µg/mL) promotes cells to extrude EVs, producing ~three-fold more particles than through natural EV secretion. When CB is induced in hypotonic conditions (223 mOsm/kg), the produced EVs (hypo-CIMVs) exhibit ~68% less intravesicular protein, giving 3.4-fold enhanced drug loading capacity compared to naturally secreted EVs. By loading doxorubicin (DOX) into hypo-CIMVs, we found that hypo-CIMVs efficiently deliver their drug cargos to their target and induce up to ~1.5-fold more cell death than the free DOX. Thus, our EV engineering offers the potential for leveraging EVs as an effective drug delivery vehicle for cancer treatment.
Collapse
|