1
|
Abdullah M, Younis M, Sohail MT, Wu S, Zhang X, Khan K, Asif M, Yan P. Recent Progress of 2D Materials-Based Photodetectors from UV to THz Waves: Principles, Materials, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402668. [PMID: 39235584 DOI: 10.1002/smll.202402668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.
Collapse
Affiliation(s)
- Muhammad Abdullah
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Younis
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Tahir Sohail
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shifang Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Asif
- THz Technical Research Center of Shenzhen University, Shenzhen Key Laboratory of Micro-nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peiguang Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Samanta S, Iturriaga H, Mai TT, Biacchi AJ, Islam R, Fullerton J, Hight Walker AR, Noufal M, Siebenaller R, Rowe E, Phatak C, Susner MA, Xue F, Singamaneni SR. Spin-Phonon Coupling and Magnetic Transition in an Organic Molecule Intercalated Cr 2Ge 2Te 6. NANO LETTERS 2024. [PMID: 39024465 DOI: 10.1021/acs.nanolett.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The manipulation of spin-phonon coupling in both formations and explorations of magnetism in two-dimensional van der Waals ferromagnetic semiconductors facilitates unprecedented prospects for spintronic devices. The interlayer engineering with spin-phonon coupling promises controllable magnetism via organic cation intercalation. Here, spectroscopic evidence reveals the intercalation effect on the intrinsic magnetic and electronic transitions in quasi-two-dimensional Cr2Ge2Te6 using tetrabutyl ammonium (TBA+) as the intercalant. The temperature evolution of Raman modes, Eg3 and Ag1, along with the magnetization measurements, unambiguously captures the enhancement of the ferromagnetic Curie temperature in the intercalated heterostructure. Moreover, the Eg4 mode highlights the increased effect of spin-phonon interaction in magnetic-order-induced lattice distortion. Combined with the first-principle calculations, we observed a substantial number of electrons transferred from TBA+ to Cr through the interface. The interplay between spin-phonon coupling and magnetic ordering in van der Waals magnets appeals for further understanding of the manipulation of magnetism in layered heterostructures.
Collapse
Affiliation(s)
- Sudeshna Samanta
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hector Iturriaga
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Thuc T Mai
- Quantum Measurement Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Adam J Biacchi
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Rajibul Islam
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - John Fullerton
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Angela R Hight Walker
- Quantum Measurement Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Mohamed Noufal
- Department of Chemical Engineering, Hampton University, Hampton, Virginia 23668, United States
| | - Ryan Siebenaller
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emmanuel Rowe
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- National Research Council, Washington, D.C. 20001, United States
- Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
- Department of Astronomy and Physics, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208, United States
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A Susner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Fei Xue
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Srinivasa R Singamaneni
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
3
|
Boland JL, Damry DA, Xia CQ, Schönherr P, Prabhakaran D, Herz LM, Hesjedal T, Johnston MB. Narrowband, Angle-Tunable, Helicity-Dependent Terahertz Emission from Nanowires of the Topological Dirac Semimetal Cd 3As 2. ACS PHOTONICS 2023; 10:1473-1484. [PMID: 37215322 PMCID: PMC10197169 DOI: 10.1021/acsphotonics.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 05/24/2023]
Abstract
All-optical control of terahertz pulses is essential for the development of optoelectronic devices for next-generation quantum technologies. Despite substantial research in THz generation methods, polarization control remains difficult. Here, we demonstrate that by exploiting band structure topology, both helicity-dependent and helicity-independent THz emission can be generated from nanowires of the topological Dirac semimetal Cd3As2. We show that narrowband THz pulses can be generated at oblique incidence by driving the system with optical (1.55 eV) pulses with circular polarization. Varying the incident angle also provides control of the peak emission frequency, with peak frequencies spanning 0.21-1.40 THz as the angle is tuned from 15 to 45°. We therefore present Cd3As2 nanowires as a promising novel material platform for controllable terahertz emission.
Collapse
Affiliation(s)
- Jessica L. Boland
- Photon
Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, U.K.
| | - Djamshid A. Damry
- Photon
Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, U.K.
| | - Chelsea Q. Xia
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Parks Road, Oxford OX1
3PU, U.K.
| | - Piet Schönherr
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Parks Road, Oxford OX1
3PU, U.K.
| | - Dharmalingam Prabhakaran
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Parks Road, Oxford OX1
3PU, U.K.
| | - Laura M. Herz
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Parks Road, Oxford OX1
3PU, U.K.
| | - Thorsten Hesjedal
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Parks Road, Oxford OX1
3PU, U.K.
| | - Michael B. Johnston
- Department
of Physics, University of Oxford, Clarendon
Laboratory, Parks Road, Oxford OX1
3PU, U.K.
| |
Collapse
|
4
|
Wu Y, Li J, Liu Y. Two-dimensional chalcogenide-based ferromagnetic semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:083002. [PMID: 36540916 DOI: 10.1088/1361-648x/acaa7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) magnetic materials draw an enormous amount of attention due to their novel physical properties and potential spintronics device applications. Room-temperature ferromagnetic (FM) semiconductors have long been pursued in 2D magnetic materials, which show a long range magnetic order down to atomic-layer thickness. The intrinsic ferromagnetism has been predicted in a series of 2D materials and verified in experiments and the magnetism can be modulated by multiple physical fields, exhibiting promising application prospects. In this review, we overview several types of 2D chalcogenide-based FM semiconductors discovered in recent years. We summary and compare their basic physical properties, including the crystal structures, electronic structures, and mechanical stability. The 2D magnetism can be described by several physical models. We also focus on the recent progresses about theoretical prediction of FM semiconductors and experimental observation of external-field regulation. Most of investigations have shown that 2D chalcogenide-based FM semiconductors have relatively high Curie temperature (Tc) and structural stability. These materials are promising to realize the room-temperature ferromagnetism in atomic-layer thickness, which is significant to design spintronics devices.
Collapse
Affiliation(s)
- Yanling Wu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Jun Li
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|