1
|
Liu Y, Li X, Zhang Y, Ge L, Guan Y, Zhang Z. Ultra-Large Scale Stitchless AFM: Advancing Nanoscale Characterization and Manipulation with Zero Stitching Error and High Throughput. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303838. [PMID: 37612824 DOI: 10.1002/smll.202303838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
The atomic force microscopy (AFM) is an important tool capable of characterization, measurement, and manipulation at the nanoscale with a vertical resolution of less than 0.1 nm. However, the conventional AFMs' scanning range is around 100 µm, which limits their capability for processing cross-scale samples. In this study, it proposes a novel approach to overcome this limitation with an ultra-large scale stitchless AFM (ULSS-AFM) that allows for the high-throughput characterization of an area of up to 1 × 1 mm2 through a synergistic integration with a compliant nano-manipulator (CNM). Specifically, the compact CNM provides planar motion with nanoscale precision and millimeter range for the sample, while the probe of the ULSS-AFM interacts with the sample. Experimental results show that the proposed ULSS-AFM performs effectively in different scanning ranges under various scanning modes, resolutions, and frequencies. Compared with the conventional AFMs, the approach enables high-throughput characterization of ultra-large scale samples without stitching or bow errors, expanding the scanning area of conventional AFMs by two orders of magnitude. This advancement opens up important avenues for cross-scale scientific research and industrial applications in nano- and microscale.
Collapse
Affiliation(s)
- Yijie Liu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Xuexuan Li
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Yuliang Zhang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Lin Ge
- NT-MDT Spectrum Instruments China office, Beijing, 100053, China
| | - Yingchun Guan
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Zhen Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Luo H, Wang X, Wen Y, Li S, Zhang T, Jiang C, Wang F, Liu L, Yu H. Self-Sensing Scanning Superlens for Three-Dimensional Noninvasive Visible-Light Nanoscale Imaging on Complex Surfaces. NANO LETTERS 2023; 23:4311-4317. [PMID: 37155371 DOI: 10.1021/acs.nanolett.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microsphere-assisted super-resolution imaging technology offers label-free, real-time dynamic imaging via white light, which has potential applications in living systems and the nanoscale detection of semiconductor chips. Scanning can aid in overcoming the limitations of the imaging area of a single microsphere superlens. However, the current scanning imaging method based on the microsphere superlens cannot achieve super-resolution optical imaging of complex curved surfaces. Unfortunately, most natural surfaces are composed of complex curved surfaces at the microscale. In this study, we developed a method to overcome this limitation through a microsphere superlens with a feedback capability. By maintaining a constant force between the microspheres and the sample, noninvasive super-resolution optical imaging of complex abiotic and biological surfaces was achieved, and the three-dimensional information on the sample was simultaneously obtained. The proposed method significantly expands the universality of scanning microsphere superlenses for samples and promotes their widespread use.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoduo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yangdong Wen
- Institute of Urban Rail Transportation, Southwest Jiaotong University, Chengdu 610000, China
| | - Shendi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Ligong University, Shenyang 110159, China
| | - Tianyao Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaodi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Jianzhu University, Shenyang 110168, China
| | - Feifei Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, Hong Kong
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
3
|
Wu G, Zhou Y, Hong M. Sub-50 nm optical imaging in ambient air with 10× objective lens enabled by hyper-hemi-microsphere. LIGHT, SCIENCE & APPLICATIONS 2023; 12:49. [PMID: 36854662 PMCID: PMC9974943 DOI: 10.1038/s41377-023-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Optical microsphere nanoscope has great potential in the inspection of integrated circuit chips for semiconductor industry and morphological characterization in biology due to its superior resolving power and label-free characteristics. However, its resolution in ambient air is restricted by the magnification and numerical aperture (NA) of microsphere. High magnification objective lens is required to be coupled with microsphere for nano-imaging beyond the diffraction limit. To overcome these challenges, in this work, high refractive index hyper-hemi-microspheres with tunable magnification up to 10× are proposed and realized by accurately tailoring their thickness with focused ion beam (FIB) milling. The effective refractive index is put forward to guide the design of hyper-hemi-microspheres. Experiments demonstrate that the imaging resolution and contrast of a hyper-hemi-microsphere with a higher magnification and larger NA excel those of a microsphere in air. Besides, the hyper-hemi-microsphere could resolve ~50 nm feature with higher image fidelity and contrast compared with liquid immersed high refractive index microspheres. With a hyper-hemi-microsphere composed microscale compound lens configuration, sub-50 nm optical imaging in ambient air is realized by only coupling with a 10× objective lens (NA = 0.3), which enhances a conventional microscope imaging power about an order of magnitude.
Collapse
Affiliation(s)
- Guangxing Wu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Yan Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Minghui Hong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- School of Aerospace Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
4
|
Chen X, Zhu M, Tang Y, Xie H, Fan X. Methine initiated polypropylene-based disposable face masks aging validated by micromechanical properties loss of atomic force microscopy. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129831. [PMID: 36084457 PMCID: PMC9398948 DOI: 10.1016/j.jhazmat.2022.129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The contagious coronavirus disease-2019 pandemic has led to an increasing number of disposable face masks (DFMs) abandoned in the environment, when they are exposed to the air condition, the broken of chemical bond induced aging is inevitably occurred which meantime would cause a drastic decrease of the mechanical flexibility. However, the understanding of between chemical bond change related to aging and its micromechanical loss is limited due to the lack of refined techniques. Herein, the atomic force microscopy (AFM) technique was firstly used to observe the aging process induced by methine of the polypropylene-based DFMs. By comparing the micromechanical properties loss, the influences of humidity and light density on the DFM aging were systematically studied in the early 72 h, and it revealed that the increasing scissions number of the easiest attacked methine (Ct-H) can gradually decrease the micromechanical properties of the polypropylene (PP)-based DFM. Furthermore, the results are also validated by the in- situ FTIR and XPS analysis. This work discloses that an aging process can be initially estimated with the micromechanical changes observed by AFM, which offers fundamental data to manage this important emerging plastic pollution during COVID-19 pandemic.
Collapse
Affiliation(s)
- Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Mude Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huiyuan Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Xu K, Liu Y. Studies of probe tip materials by atomic force microscopy: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1256-1267. [PMID: 36415853 PMCID: PMC9644057 DOI: 10.3762/bjnano.13.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 05/09/2023]
Abstract
As a tool that can test insulators' surface morphology and properties, the performance index of atomic force microscope (AFM) probes is the most critical factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This paper reviews the latest research results in metal, carbon nanotube, and colloidal probes and reviews their related methods and techniques, analyses the advantages and disadvantages of the improved probes compared with ordinary probes by comparing the differences in spatial resolution, sensitivity, imaging, and other performance aspects, and finally provides an outlook on the future development of AFM probes. This paper promotes the development of AFM probes in the direction of new probes and further promotes the broader and deeper application of scanning probe microscope (SPM).
Collapse
Affiliation(s)
- Ke Xu
- School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yuzhe Liu
- School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|