1
|
Portone A, Ganzerli F, Petrachi T, Resca E, Bergamini V, Accorsi L, Ferrari A, Sbardelatti S, Rovati L, Mari G, Dominici M, Veronesi E. Hybrid biofabricated blood vessel for medical devices testing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2404382. [PMID: 39328923 PMCID: PMC11425690 DOI: 10.1080/14686996.2024.2404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Current in vitro and in vivo tests applied to assess the safety of medical devices retain several limitations, such as an incomplete ability to faithfully recapitulate human features, and to predict the response of human tissues together with non-trivial ethical aspects. We here challenged a new hybrid biofabrication technique that combines bioprinting and Fast Diffusion-induced Gelation strategy to generate a vessel-like structure with the attempt to spatially organize fibroblasts, smooth-muscle cells, and endothelial cells. The introduction of Fast Diffusion-induced Gelation minimizes the endothelial cell mortality during biofabrication and produce a thin endothelial layer with tunable thickness. Cell viability, Von Willebrand factor, and CD31 expression were evaluated on biofabricated tissues, showing how bioprinting and Fast Diffusion-induced Gelation can replicate human vessels architecture and complexity. We then applied biofabricated tissue to study the cytotoxicity of a carbothane catheter under static condition, and to better recapitulate the effect of blood flow, a novel bioreactor named CuBiBox (Customized Biological Box) was developed and introduced in a dynamic modality. Collectively, we propose a novel bioprinted platform for human in vitro biocompatibility testing, predicting the impact of medical devices and their materials on vascular systems, reducing animal experimentation and, ultimately, accelerating time to market.
Collapse
Affiliation(s)
| | | | | | - Elisa Resca
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
| | - Valentina Bergamini
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Accorsi
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
| | - Alberto Ferrari
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Luigi Rovati
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Mari
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
| | - Massimo Dominici
- Technopole “Mario Veronesi”, Mirandola, Modena, Italy
- Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
2
|
Asciak L, Gilmour L, Williams JA, Foster E, Díaz-García L, McCormick C, Windmill JFC, Mulvana HE, Jackson-Camargo JC, Domingo-Roca R. Investigating multi-material hydrogel three-dimensional printing for in vitro representation of the neo-vasculature of solid tumours: a comprehensive mechanical analysis and assessment of nitric oxide release from human umbilical vein endothelial cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230929. [PMID: 37593713 PMCID: PMC10427827 DOI: 10.1098/rsos.230929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Many solid tumours (e.g. sarcoma, carcinoma and lymphoma) form a disorganized neo-vasculature that initiates uncontrolled vessel formation to support tumour growth. The complexity of these environments poses a significant challenge for tumour medicine research. While animal models are commonly used to address some of these challenges, they are time-consuming and raise ethical concerns. In vitro microphysiological systems have been explored as an alternative, but their production typically requires multi-step lithographic processes that limit their production. In this work, a novel approach to rapidly develop multi-material tissue-mimicking, cell-compatible platforms able to represent the complexity of a solid tumour's neo-vasculature is investigated via stereolithography three-dimensional printing. To do so, a series of acrylate resins that yield covalently photo-cross-linked hydrogels with healthy and diseased mechano-acoustic tissue-mimicking properties are designed and characterized. The potential viability of these materials to displace animal testing in preclinical research is assessed by studying the morphology, actin expression, focal adhesions and nitric oxide release of human umbilical vein endothelial cells. These materials are exploited to produce a simplified multi-material three-dimensional printed model of the neo-vasculature of a solid tumour, demonstrating the potential of our approach to replicate the complexity of solid tumours in vitro without the need for animal testing.
Collapse
Affiliation(s)
- Lisa Asciak
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lauren Gilmour
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Euan Foster
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Lara Díaz-García
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - James F. C. Windmill
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Helen E. Mulvana
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Roger Domingo-Roca
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
4
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
5
|
Guagliano G, Volpini C, Briatico-Vangosa F, Cornaglia AI, Visai L, Petrini P. Toward 3D-Bioprinted Models of the Liver to Boost Drug Development. Macromol Biosci 2022; 22:e2200264. [PMID: 36106413 DOI: 10.1002/mabi.202200264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Indexed: 01/15/2023]
Abstract
The main problems in drug development are connected to enormous costs related to the paltry success rate. The current situation empowered the development of high-throughput and reliable instruments, in addition to the current golden standards, able to predict the failures in the early preclinical phase. Being hepatotoxicity responsible for the failure of 30% of clinical trials, and the 21% of withdrawal of marketed drugs, the development of complex in vitro models (CIVMs) of liver is currently one of the hottest topics in the field. Among the different fabrication techniques, 3D-bioprinting is emerging as a powerful ally for their production, allowing the manufacture of three-dimensional constructs characterized by computer-controlled and customized geometry, and inter-batches reproducibility. Thanks to these, it is possible to rapidly produce tailored cell-laden constructs, to be cultured within static and dynamic systems, thus reaching a further degree of personalization when designing in vitro models. This review highlights and prioritizes the most recent advances related to the development of CIVMs of the hepatic environment to be specifically applied to pharmaceutical research, with a special focus on 3D-bioprinting, since the liver is primarily involved in the metabolism of drugs.
Collapse
Affiliation(s)
- Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Antonia Icaro Cornaglia
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Via Forlanini 2, Pavia, PV, 27100, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Università di Pavia Unit, Pavia, PV, 27100, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Politecnico di Milano Unit, Milano, MI, 20133, Italy
| |
Collapse
|