1
|
Willis-Fox N. In-situ monitoring of polymer mechanochemistry: what can be learned from small molecule systems. Front Chem 2024; 12:1490847. [PMID: 39478993 PMCID: PMC11521884 DOI: 10.3389/fchem.2024.1490847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Using mechanical energy to drive chemical transformations is an exciting prospect to improve the sustainability of chemical reactions and to produce products not achievable by more traditional methods. In-situ monitoring of reaction pathways and chemical transformations is vital to deliver the reproducible results required for scale up to realize the potential of mechanochemistry beyond the chemistry lab. This mini review will discuss the recent advances in in-situ monitoring of ball milling and polymer mechanochemistry, highlighting the potential for shared knowledge for scale up.
Collapse
Affiliation(s)
- Niamh Willis-Fox
- Department of Materials, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Hum G, Muzammil EM, Li Y, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene Flanked N-heterocyclic Carbene (NHC) Precursors and Preparation of Their Metal Complexes. Chemistry 2024; 30:e202402056. [PMID: 38962947 DOI: 10.1002/chem.202402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The synthesis of new compounds is an important pillar for the advancement of the field of chemistry and adjacent fields. In this regard, over the last decades huge efforts have been made to not only develop new molecular entities but also more efficient sustainable synthetic methodologies due to the increasing concerns over environmental sustainability. In this context, we have developed synthetic routes to novel corannulene flanked imidazolium bromide NHC precursors both in the solid-state and solution phases. Our work presents a comprehensive comparative study of mechanochemical routes and conventional solution-based methods. Green metrics and energy consumption comparison were performed for both routes revealing ball-milling generation of these compounds to be an environmentally greener technique to produce such precursors compared to conventional solvent-based methods. In addition, we have demonstrated proof-of-concept of the herein reported corannulene flanked NHCs to be robust ligands for transition metals and their ligand substitution reactions.
Collapse
Affiliation(s)
- Gavin Hum
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Ezzah M Muzammil
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yongxin Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Felipe García
- School of Chemistry, Monash University, 3800, Clayton, Victoria, Australia
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
- National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67-103 Donat Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
4
|
Yaragorla S, Sneha Latha D, Kumar R. Mechanochemical Regioselective [3+3] Annulation of 6-Amino Uracil with Propargyl Alcohols Catalyzed by a Brønsted Acid/Hexafluoroisopropanol. Chemistry 2024; 30:e202401480. [PMID: 38727792 DOI: 10.1002/chem.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 06/19/2024]
Abstract
A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Dandugula Sneha Latha
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Rituraj Kumar
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
5
|
Amer MM, Backer L, Buschmann H, Handler N, Scherf-Clavel O, Holzgrabe U, Bolm C. Prediction of Degradation Profiles for Various Sartans under Solvent-Free Mechanochemical Conditions. Anal Chem 2024. [PMID: 39092810 DOI: 10.1021/acs.analchem.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
For the approval of a drug, the stability data must be submitted to regulatory authorities. Such analyses are often time-consuming and cost-intensive. Forced degradation studies are mainly carried out under harsh conditions in the dissolved state, often leading to extraneous degradation profiles for a solid drug. Oxidative mechanochemical degradation offers the possibility of generating realistic degradation profiles. In this study, a sustainable mechanochemical procedure is presented for the degradation of five active pharmaceutical ingredients (APIs) from the sartan family: losartan potassium, irbesartan, valsartan, olmesartan medoxomil, and telmisartan. High-resolution mass spectrometry enabled the detection of impurities already present in untreated APIs and allowed the elucidation of degradation products. Significant degradation profiles could already be obtained after 15-60 min of ball milling time. Many of the identified degradation products are described in the literature and pharmacopoeias, emphasizing the significance of our results and the applicability of this approach to predict degradation profiles for drugs in the solid state.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Laura Backer
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Helmut Buschmann
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | - Norbert Handler
- RD&C Research, Development & Consulting GmbH, 1170 Vienna, Austria
| | | | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
Wong HQ, Lin TH, Liao JM, Kholimatussadiah S, Baskoro F, Tsai HHG, Yen HJ. Electroactive Carbazole-Based Polycyclic Aromatic Hydrocarbons: Synthesis, Photophysical Properties, and Computational Studies. ACS OMEGA 2024; 9:29379-29390. [PMID: 39005832 PMCID: PMC11238223 DOI: 10.1021/acsomega.4c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Herein, we explored the oxidative coupling reactions of carbazole-based polycyclic aromatic hydrocarbons using traditional Scholl reactions and electrochemical oxidation. Our findings indicate that the oxidation predominantly occurs at the carbazole functional group. The underlying reaction mechanisms were also clarified through theoretical investigations, highlighting that the primary oxidation pathway involves the 3,6-positions of the carbazole moiety, which is attributable to its high electron density.
Collapse
Affiliation(s)
- Hui Qi Wong
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Sustainable
Chemical Science and Technology Program, Taiwan International Graduate
Program (TIGP), Academia Sinica and National
Taiwan University, Taipei 11529, Taiwan
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Ting-Hsuan Lin
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Jian-Ming Liao
- Department
of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Septia Kholimatussadiah
- Nano Science
and Technology Program, TIGP, Academia Sinica
and National Taiwan University, Taipei 11529, Taiwan
| | - Febri Baskoro
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hui-Hsu Gavin Tsai
- Department
of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
- Research
Center of New Generation Light Driven Photovoltaic Module, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Hung-Ju Yen
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
8
|
Báti G, Csókás D, Stuparu MC. Mechanochemical Scholl Reaction on Phenylated Cyclopentadiene Core: One-Step Synthesis of Fluoreno[5]helicenes. Chemistry 2024; 30:e202302971. [PMID: 37870299 DOI: 10.1002/chem.202302971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we explore feasibility of the mechanochemical approach in the synthesis of tetrabenzofluorenes (fluoreno[5]helicenes). For this, commercially available phenylated cyclopentadiene precursors are subjected to the Scholl reaction in the solid state using FeCl3 as an oxidant and sodium chloride as the solid reaction medium. This ball milling process gave access to the 5-membered ring containing-helicenes in one synthetic step in high (95-96 %) isolated yields. The solution-phase reactions, however, were found to be moderate to low yielding in this regard (10-40 %).
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
9
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
10
|
Reynes JF, Isoni V, García F. Tinkering with Mechanochemical Tools for Scale Up. Angew Chem Int Ed Engl 2023; 62:e202300819. [PMID: 37114517 DOI: 10.1002/anie.202300819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Mechanochemistry provides an environmentally benign platform to develop more sustainable chemical processes by limiting raw materials, energy use, and waste generation while using physically smaller equipment. A continuously growing research community has steadily showcased examples of beneficial mechanochemistry applications at both the laboratory and the preparative scale. In contrast to solution-based chemistry, mechanochemical processes have not yet been standardized, and thus scaling up is still a nascent discipline. The purpose of this Minireview is to highlight similarities, differences and challenges of the various approaches that have been successfully applied for a range of chemical applications at various scales. We hope to provide a discussion starting point for those interested in further developing mechanochemical processes for commercial use and/or industrialisation.
Collapse
Affiliation(s)
- Javier F Reynes
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
| | - Valerio Isoni
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
- School of Chemistry, Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
11
|
Báti G, Laxmi S, Stuparu MC. Mechanochemical Synthesis of Corannulene: Scalable and Efficient Preparation of A Curved Polycyclic Aromatic Hydrocarbon under Ball Milling Conditions. CHEMSUSCHEM 2023; 16:e202301087. [PMID: 37581302 DOI: 10.1002/cssc.202301087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Corannulene, a curved polycyclic aromatic hydrocarbon, is prepared in a multigram scale through mechanochemical synthesis. Initially, a mixer mill approach is examined and found to be suitable for a gram scale synthesis. For larger scales, planetary mills are used. For instance, 15 g of corannulene could be obtained in a single milling cycle with an isolated yield of 90 %. The yields are lower when the jar rotation rate is lower or higher than 400 revolutions per minute (rpm). Cumulatively, 98 g of corannulene is produced through the ball milling-based grinding techniques. These results indicate the future potential of mechanochemistry in the rational chemical synthesis of highly curved nanocarbons such as fullerenes and carbon nanotubes.
Collapse
Affiliation(s)
- Gábor Báti
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Shoba Laxmi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
12
|
Wang H, Ding W, Zou G. Mechanoredox/Nickel Co-Catalyzed Cross Electrophile Coupling of Benzotriazinones with Alkyl (Pseudo)halides. J Org Chem 2023; 88:12891-12901. [PMID: 37615491 DOI: 10.1021/acs.joc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An air-tolerant mechanoredox/nickel cocatalyzed cross electrophile coupling of benzotriazinones with alkyl (pseudo)halides is developed by liquid-assisting grinding in the presence of manganese powders and strontium titanate as a reductant and a cocatalyst, respectively. Mechanical activation of metal surfaces via ball milling eliminates the chemical activator for manganese, while mechanoredox cocatalysis of strontium titanate remarkably improves the aryl/alkyl cross electrophile coupling via piezoelectricity-mediated radical generation from alkyl halides. Both benzotriazinones and alkyl (pseudo)halides display reactivities in the mechanoredox/nickel cocatalysis different from those of conventional thermal chemistry in solution. The scope of the reaction is demonstrated with 26 examples, showing a high chemoselectivity of bromides vs chlorides.
Collapse
Affiliation(s)
- Huimin Wang
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| |
Collapse
|
13
|
Hu C, van Bonn P, Demco DE, Bolm C, Pich A. Mechanochemical Synthesis of Stimuli Responsive Microgels. Angew Chem Int Ed Engl 2023; 62:e202305783. [PMID: 37177824 DOI: 10.1002/anie.202305783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Mechanochemical approaches are widely used for the efficient, solvent-free synthesis of organic molecules, however their applicability to the synthesis of functional polymers has remained underexplored. Herein, we demonstrate for the first time that mechanochemically triggered free-radical polymerization allows solvent- and initiator-free syntheses of structurally and morphologically well-defined complex functional macromolecular architectures, namely stimuliresponsive microgels. The developed mechanochemical polymerization approach is applicable to a variety of monomers and allows synthesizing microgels with tunable chemical structure, variable size, controlled number of crosslinks and reactive functional end-groups.
Collapse
Affiliation(s)
- Chaolei Hu
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dan E Demco
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
14
|
Al-Ithawi WKA, Khasanov AF, Kovalev IS, Nikonov IL, Platonov VA, Kopchuk DS, Santra S, Zyryanov GV, Ranu BC. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers (Basel) 2023; 15:1853. [PMID: 37112002 PMCID: PMC10142995 DOI: 10.3390/polym15081853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.
Collapse
Affiliation(s)
- Wahab K. A. Al-Ithawi
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq
| | - Albert F. Khasanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor S. Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Igor L. Nikonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Vadim A. Platonov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia
| | - Brindaban C. Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
16
|
Amer MM, Hommelsheim R, Schumacher C, Kong D, Bolm C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss 2023; 241:79-90. [PMID: 36128995 DOI: 10.1039/d2fd00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An electro-mechanochemical protocol for the synthesis of vinylic sulfoximines has been developed. Utilising mechanochemically strained BaTiO3 nanoparticles, the catalytic active system is generated in situ by the reduction of copper(II) chloride. Various combinations of electron-donating and -withdrawing groups are tolerated, and the approach leads to products with difunctionalised double bonds in good to excellent yields. Attempts to add a sulfoximidoyl chloride to an alkyne proved difficult. Additions of a sulfonyl iodide to allenes and alkynes proceeded smoothly in the presence of silica gel without the need for activation by a piezoelectric material.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany. .,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
17
|
Panther LA, Guest DP, McGown A, Emerit H, Tareque RK, Jose A, Dadswell CM, Coles SJ, Tizzard GJ, González‐Méndez R, Goodall CAI, Bagley MC, Spencer J, Greenland BW. Solvent‐Free Synthesis of Core‐Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald–Hartwig Reactions. Chemistry 2022; 28:e202201444. [PMID: 35621283 PMCID: PMC9544761 DOI: 10.1002/chem.202201444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Solvent‐free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’‐bis(2‐ethylhexyl)‐2,6‐dibromo‐1,4,5,8‐naphthalenetetracarboxylic acid (Br2‐NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real‐world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.
Collapse
Affiliation(s)
- Lydia A. Panther
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Daniel P. Guest
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Andrew McGown
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Hugo Emerit
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Raysa Khan Tareque
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Arathy Jose
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Chris M. Dadswell
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Simon J. Coles
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Graham J. Tizzard
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Ramón González‐Méndez
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Charles A. I. Goodall
- Faculty of Engineering & Science FES Engineering & Science School Operations University of Greenwich Old Royal Naval College Park Row London SE10 9LS UK
| | - Mark C. Bagley
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - John Spencer
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
- Sussex Drug Discovery Centre School of Life Sciences University of Sussex Falmer, Brighton BN1 9QG UK
| | - Barnaby W. Greenland
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| |
Collapse
|
18
|
Chemoselective Chan-Lam coupling by directly using copper powders via mechanochemical metal activation for catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Terhorst S, Jansen T, Langletz T, Bolm C. Sulfonimidamides by Sequential Mechanochemical Chlorinations and Aminations of Sulfinamides. Org Lett 2022; 24:4109-4113. [PMID: 35658444 DOI: 10.1021/acs.orglett.2c01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report the first mechanochemical synthesis of sulfonimidamides. The one-pot, two-step method requires neither a solvent nor inert conditions. In a mixer mill, sulfinamides are rapidly converted to sulfonimidoyl chlorides by oxidative chlorination with N-chlorosuccinimide (NCS). Subsequent substitutions with amines provides a wide range of diversely substituted sulfonimidamides.
Collapse
Affiliation(s)
- Steven Terhorst
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Jansen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Tim Langletz
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Carsten Bolm
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
20
|
Vadivelu M, Raheem AA, Raj JP, Elangovan J, Karthikeyan K, Praveen C. Mechanochemical Access to Functional Clickates with Nitro-Retentive Selectivity via Organocatalyzed Oxidative Azide-Olefin Cycloaddition. Org Lett 2022; 24:2798-2803. [DOI: 10.1021/acs.orglett.2c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - John Paul Raj
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Jebamalai Elangovan
- Department of Chemistry, Rajah Serfoji Government College, Thanjavur 613005, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| |
Collapse
|