1
|
Tao H, Guo W, Liu J, Shi Y, Tao H, Shuai Q, Huang L. Deciphering the relationship between the ordered pore structure and solid-phase microextraction behavior of covalent organic frameworks for phenols. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133764. [PMID: 38354438 DOI: 10.1016/j.jhazmat.2024.133764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The extraction performance of materials is highly related to their physical structure. However, the precise impact of ordered pore structure in covalent organic frameworks (COFs) on extraction performance are still puzzling. To look insight into this, a series of COFs with varying degrees of ordered pore structures were prepared at room temperature by adjusting reaction time and their extraction efficiencies toward phenolic compounds were investigated. The experimental results revealed that the COF with a short range ordered pore structure exhibited a higher affinity for phenolic compounds along with a larger enrichment factor, while the COF with a long range ordered pore structure demonstrated faster extraction kinetics. The investigation into interaction mechanism revealed that the density of available sites is responsible for these differences. Taking COF-OMe-0.5 h as solid-phase microextraction fiber coating, a highly efficient and sensitive quantitative analysis method for phenolic compounds was established by combining it with gas chromatograph-mass spectrometer. The established method boasts high enrichment factors (7192-29440), wide linear ranges (2.0-10000 ng L-1), and low detection limits (0.24-0.54 ng L-1). This study provides a conceptual guide for constructing desirable COFs with controlled pore structures for specific applications.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Jiale Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Yanke Shi
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Cao Y, Scholte A, Prehm M, Anders C, Chen C, Song J, Zhang L, He G, Tschierske C, Liu F. Understanding the Role of Trapezoids in Honeycomb Self-Assembly-Pathways between a Columnar Liquid Quasicrystal and its Liquid-Crystalline Approximants. Angew Chem Int Ed Engl 2024; 63:e202314454. [PMID: 38009676 DOI: 10.1002/anie.202314454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Alexander Scholte
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Marko Prehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Changlong Chen
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangxuan Song
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute for Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Zheng L, Song Q, Tan P, Wang ST, Liu XQ, Sun LB. Endowing Covalent Organic Frameworks with Photoresponsive Active Sites for Controllable Propylene Adsorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207291. [PMID: 36604978 DOI: 10.1002/smll.202207291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Photoresponsive covalent organic frameworks (PCOFs) have emerged as attractive candidates for adsorption, but it is challenging to construct PCOF adsorbents due to structural order loss of covalent organic frameworks (COFs) after introducing photoresponsive motifs and/or tedious steps of postmodification. Here, a facile strategy is developed, by dispersing photoresponsive metal-organic polyhedra (PMOP) into COFs, to endow COFs with photoresponsive adsorption sites. As a proof-of-concept study, a COF with pore size of 4.5 nm and PMOP with suitable molecular size (4.0 and 3.1 nm for trans and cis configuration, respectively) are selected to meet the requirements of proper accommodation space, good guest dispersion, and free isomerization. The structure of COF is well preserved after introducing PMOPs. Interestingly, the obtained photoresponsive host-guest composite (PHGC) adsorbents exhibit photomodulated adsorption capacity on propylene (C3 H6 ) and the change in adsorption capacity can reach up to 43.3% and is stable during multiple cycles. Density functional theory calculations reveal that visible-light irradiation drives the azobenzene motifs in PHGCs to the trans configuration and the adsorption sites are fully open and interact with C3 H6 . UV-light irradiation makes the azobenzene motifs transform to the cis configuration, leading to the shield of the adsorption sites and the consequent release of C3 H6 .
Collapse
Affiliation(s)
- Long Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qian Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Sheng-Tao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
4
|
Ren X, Wang X, Song W, Bai F, Li Y. Fascinating isomeric covalent organic frameworks. NANOSCALE 2023; 15:4762-4771. [PMID: 36756711 DOI: 10.1039/d2nr07228a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Isomeric covalent organic frameworks possessing the same chemical constitutions but different atomic arrangement structures and physicochemical properties are fascinating branches of covalent organic frameworks (COFs). However, the rational design and targeted synthesis of isomeric COFs remain conundrums, so the investigation of isomeric COFs is still in a fledging period. According to the diversity of frameworks, positional isomers with similar structures and framework isomers having distinct constructions are the main existing subspecies of isomeric COFs. In this review, we focus on the research progress and substantial achievements in this fascinating embranchment and systematically summarize and highlight the design principles of both positional isomeric and framework isomeric COFs, which will potentially facilitate further exploitation and investigation of novel isomeric COFs. The application and structure-property relationship of these isomeric COFs have been briefly introduced. Moreover, key constraints of current isomeric COFs and further advancement of this promising field are proposed and anticipated.
Collapse
Affiliation(s)
- Xitong Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Xinyuan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Wen Song
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Yusen Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Li Y, Su X, Zheng W, Zheng JJ, Guo L, Bonn M, Gao X, Wang HI, Chen L. Targeted Synthesis of Isomeric Naphthalene-Based 2D Kagome Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216795. [PMID: 36627239 DOI: 10.1002/anie.202216795] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Targeted synthesis of kagome (kgm) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric "two-in-one" monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60 @m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.
Collapse
Affiliation(s)
- Yusen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jia-Jia Zheng
- laboratory of theoretical and computational nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Linshuo Guo
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xingfa Gao
- laboratory of theoretical and computational nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Zhang J, Yan X, Chen P, Chen D, Yang Z, Wang J, Chen L. Triangular Heteroporous Covalent Organic Framework via a K-Shaped "Two-in-One" Monomer: Targeted Synthesis and Selective Removal of Organic Pollutants. Macromol Rapid Commun 2022:e2200894. [PMID: 36583705 DOI: 10.1002/marc.202200894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Covalent organic frameworks (COFs) have attracted increasing research interest due to their intriguing topological structures and fascinating properties. Diverse COFs with different shapes and sizes are developed by the design of appropriate building blocks. However, the heteroporous COFs to date are still in their infancy due to the relatively limited configuration of precursors. Herein, it is ingeniously designed and synthesized a new K-shaped "two-in-one" building unit (3',6'-bis(4-(5,5-dimethyl-1,3-dixoan-2-yl)phenyl)-[1,1':2',1"-terphenyl]-4,4"-diamine, BPTD), thus realizing the construction of triangular dual microporous COF (BPTD-COF) via self-polycondensation of the K-shaped monomer. The super micropore (0.76 nm) of BPTD-COF endows the higher density of amine activity sites, while the other aperture size (1.35 nm) meets the need for accommodating cationic dyes (rhodamine B, methylene blue), thus BPTD-COF displays a distinctive selective adsorption for cationic dyes with good reusability.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoli Yan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.,Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Pei Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zongfan Yang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jianhui Wang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Liu C, Wang Z, Zhang L, Dong Z. Soft 2D Covalent Organic Framework with Compacted Honeycomb Topology. J Am Chem Soc 2022; 144:18784-18789. [PMID: 36201683 DOI: 10.1021/jacs.2c08468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this contribution, we report the synthesis of an imine-based soft 2D covalent organic framework (S-COF) with compacted honeycomb topology via inveterately selecting a helically folded ditopic flexible linker and a trigonal building block. In contrast to various topological structures of rigid monomer-based COFs (R-COFs) reported so far, owing to the presence of flexible skeleton S-COF can spontaneously form a compacted and nonporous topological structure via intramolecular π stacking of presupposed honeycomb-like topology. Such S-COFs with a compacted honeycomb topology have neither been proposed theoretically nor been achieved experimentally. The compacted topological structure of 2D S-COF was clearly characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and circular dichroism (CD) measurements. This study opens a new window to the development of S-COFs and will significantly expand the scope of COF materials.
Collapse
Affiliation(s)
- Chenglong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenzhu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Center for Supramolecular Chemical Biology, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Substituent Effects on the Photocatalytic Properties of A Symmetric Covalent Organic Framework. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2205088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|