1
|
Ren X, Wu H, Guo Y, Wei H, Wu H, Wang H, Lin Z, Xiong C, Liu H, Zhang L, Li Z. The Impact of Oxygen Content in O-Doped MoS 2 on the Kinetics of Polysulfide Conversion in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2312256. [PMID: 39030979 DOI: 10.1002/smll.202312256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Polysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high-content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low-content oxygen doping, which can be attributed to the alteration of crystal structure from 2H-phase to the 1T-phase, the introduction of increased Li-O interactions, and the effect of defects resulting from high-oxygen doping. Consequently, the lithium-sulfur batteries using high-oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g-1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium-sulfur batteries employing paper-based electrodedemonstrate an areal capacity of 3.91 mAh cm-2 at 0.15C, even with sulfur loading of 4.1 mg cm-2 and electrolyte of 6.7 µL mg-1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high-oxygen doped MoS2 shows promise as an efficient catalyst for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Xuan Ren
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Haiwei Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Yanbo Guo
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Hairu Wei
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Haoteng Wu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Huan Wang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Zhihua Lin
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz University Hannover, 30167, Hannover, Germany
- Institute of Solid State Physics, Leibniz University Hannover, 30167, Hannover, Germany
| | - Chuanyin Xiong
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Hanbin Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| | - Lin Zhang
- Laboratory of Nano and Quantum Engineering (LNQE), Leibniz University Hannover, 30167, Hannover, Germany
- Institute of Solid State Physics, Leibniz University Hannover, 30167, Hannover, Germany
| | - Zhijian Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
2
|
Zhao L, Tao Y, Zhang Y, Lei Y, Lai WH, Chou S, Liu HK, Dou SX, Wang YX. A Critical Review on Room-Temperature Sodium-Sulfur Batteries: From Research Advances to Practical Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402337. [PMID: 38458611 DOI: 10.1002/adma.202402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Room-temperature sodium-sulfur (RT-Na/S) batteries are promising alternatives for next-generation energy storage systems with high energy density and high power density. However, some notorious issues are hampering the practical application of RT-Na/S batteries. Besides, the working mechanism of RT-Na/S batteries under practical conditions such as high sulfur loading, lean electrolyte, and low capacity ratio between the negative and positive electrode (N/P ratio), is of essential importance for practical applications, yet the significance of these parameters has long been disregarded. Herein, it is comprehensively reviewed recent advances on Na metal anode, S cathode, electrolyte, and separator engineering for RT-Na/S batteries. The discrepancies between laboratory research and practical conditions are elaborately discussed, endeavors toward practical applications are highlighted, and suggestions for the practical values of the crucial parameters are rationally proposed. Furthermore, an empirical equation to estimate the actual energy density of RT-Na/S pouch cells under practical conditions is rationally proposed for the first time, making it possible to evaluate the gravimetric energy density of the cells under practical conditions. This review aims to reemphasize the vital importance of the crucial parameters for RT-Na/S batteries to bridge the gaps between laboratory research and practical applications.
Collapse
Affiliation(s)
- Lingfei Zhao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Ying Tao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yiyang Zhang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yaojie Lei
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hua-Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shi-Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
3
|
Xiao Y, Zheng Y, Yao G, Zhang Y, Li Z, Liu S, Zheng F. Defect engineering of a TiO 2 anatase/rutile homojunction accelerating sulfur redox kinetics for high-performance Na-S batteries. Dalton Trans 2024; 53:8168-8176. [PMID: 38680066 DOI: 10.1039/d4dt00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries have the drawbacks of the poor shuttle effect of soluble sodium polysulfides (NaPSs) as well as slow sulfur redox kinetics, which result in poor cycling stability and low capacity, seriously affecting their extensive application. Herein, defect engineering is applied to construct rich oxygen vacancies at the interface of a TiO2 anatase/rutile homojunction (OV-TRA) to enhance sulfur affinity and redox reaction kinetics. Combining structural characterizations with electrochemical analysis reveals that OV-TRA well alleviates the shuttle effect of NaPSs and precipitates the deposition and diffusion kinetics of Na2S. Consequently, S/OV-TRA provides excellent electrochemical performance with a reversible capacity of 870 mA h g-1 at 0.1 C after 100 cycles and a long-term cycling capability of 759 mA h g-1 at 1 C after 1000 cycles. This work provides an effective interfacial defect engineering strategy to promote the application of metal oxides in RT Na-S batteries.
Collapse
Affiliation(s)
- Yue Xiao
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yelei Zheng
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Ge Yao
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yuhang Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Zhiqiang Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Shoujie Liu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Fangcai Zheng
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, China.
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
4
|
Song W, Yang X, Zhang T, Huang Z, Wang H, Sun J, Xu Y, Ding J, Hu W. Optimizing potassium polysulfides for high performance potassium-sulfur batteries. Nat Commun 2024; 15:1005. [PMID: 38307899 PMCID: PMC10837207 DOI: 10.1038/s41467-024-45405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
Potassium-sulfur batteries attract tremendous attention as high-energy and low-cost energy storage system, but achieving high utilization and long-term cycling of sulfur remains challenging. Here we show a strategy of optimizing potassium polysulfides for building high-performance potassium-sulfur batteries. We design the composite of tungsten single atom and tungsten carbide possessing potassium polysulfide migration/conversion bi-functionality by theoretical screening. We create two ligand environments for tungsten in the metal-organic framework, which respectively transmute into tungsten single atom and tungsten carbide nanocrystals during pyrolysis. Tungsten carbide provide catalytic sites for potassium polysulfides conversion, while tungsten single atoms facilitate sulfides migration thereby significantly alleviating the insulating sulfides accumulation and the associated catalytic poisoning. Resultantly, highly efficient potassium-sulfur electrochemistry is achieved under high-rate and long-cycling conditions. The batteries deliver 89.8% sulfur utilization (1504 mAh g-1), superior rate capability (1059 mAh g-1 at 1675 mA g-1) and long lifespan of 200 cycles at 25 °C. These advances enlighten direction for future KSBs development.
Collapse
Affiliation(s)
- Wanqing Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xinyi Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Tao Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Zechuan Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China.
- School of Materials Science and Engineering, Hainan University, Haikou, China.
| | - Jie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yunhua Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China.
| |
Collapse
|
5
|
Wang L, Liu G, Li Y, Weng W, Xin X, Yao X. Tungsten and Boron Codoping toward High Ionic Conductivity and Stable Sodium Solid Electrolyte for All-Solid-State Sodium Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4847-4853. [PMID: 38241525 DOI: 10.1021/acsami.3c17535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Sodium solid electrolytes with high ionic conductivity and good interfacial stability with sodium metal are crucial to realize high-performance all-solid-state sodium batteries. In this work, W and B-codoped Na3Sb1-xWxS4-xBx solid electrolytes are prepared by melt-quenching with further annealing. The synthesized Na3Sb0.95W0.05S3.95B0.05 solid electrolyte possesses a high ionic conductivity of 11.06 mS cm-1 under 25 °C and shows significantly improved interface compatibility with metal sodium. Specifically, Na/Na3Sb0.95W0.05S3.95B0.05/Na symmetric cell can stable cycle for 500 h under a current density of 0.05 mA cm-2. In addition, the resultant TiS2/Na3Sb0.95W0.05S3.95B0.05/Na battery exhibits an initial charge capacity of 164.1 mAh g-1 at 0.1 C with a capacity retention of 76.4% after 100 cycles. This work provides a new strategy to realize the high ionic conductivity of sodium solid electrolytes with improved interfacial stability with sodium anode.
Collapse
Affiliation(s)
- Lan Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Gaozhan Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yunming Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Wei Weng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xing Xin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiayin Yao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
6
|
Wang Y, Chai J, Li Y, Li Q, Du J, Chen Z, Wang L, Tang B. Strategies to mitigate the shuttle effect in room temperature sodium-sulfur batteries: improving cathode materials. Dalton Trans 2023; 52:2548-2560. [PMID: 36752364 DOI: 10.1039/d3dt00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Room-temperature sodium-sulfur batteries (RT-Na/S batteries) with high reversible capacity (1675 mA h g-1) and excellent energy density (1274 W h kg-1) based on abundant resources of the metal Na have become a research hotspot recently. However, the intermediate product sodium polysulfides (NaPSs) generated during the charge-discharge process are easily dissolved in the ether electrolyte and transferred from the sulfur cathode to the metallic sodium surface, resulting in rapid capacity decay (shuttle effect), which seriously affects the practical application of RT-Na/S batteries. Herein, the mechanism and recent research progress in suppressing the shuttle effect of the sulfur cathode in RT-Na/S batteries are summarized. Strategies such as carbon-based materials physically fixing NaPSs, polar materials absorbing NaPSs to reduce their dissolution, and catalytic materials accelerating the transformation of NaPSs into final products are provided. Challenges and insights into high-performance sulfur electrodes for optimizing RT-Na/S batteries are discussed.
Collapse
Affiliation(s)
- Yiting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Jiali Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Qingmeng Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Jiakai Du
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Zhiyuan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Longzhen Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
7
|
Jiang Y, Yu Z, Zhou X, Cheng X, Huang H, Liu F, Yang Y, He S, Pan H, Yang H, Yao Y, Rui X, Yu Y. Single-Atom Vanadium Catalyst Boosting Reaction Kinetics of Polysulfides in Na-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208873. [PMID: 36366906 DOI: 10.1002/adma.202208873] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is hindered by the insulated sulfur, the severe shuttle effect of sodium polysulfides, and insufficient polysulfide conversion. Herein, on the basis of first principles calculations, single-atom vanadium anchored on a 3D nitrogen-doped hierarchical porous carbon matrix (denoted as 3D-PNCV) is designed and fabricated to enhance sulfur reactivity, and adsorption and catalytic conversion performance of sodium polysulfide. The 3D-PNCV host with abundant and active V sites, hierarchical porous structure, high electrical conductivity, and strong chemical adsorption/conversion ability of V-N bonding can immobilize the polysulfides and promote reversibly catalytic conversion of polysulfides toward Na2 S. Therefore, as-fabricated RT Na-S batteries can achieve a high reversible capacity (445 mAh g-1 over 800 cycles at 5 A g-1 ) and excellent rate capability (224 mAh g-1 at 10 A g-1 ). The electrocatalysis mechanism of sodium polysulfides is further experimentally and theoretically revealed, which provides a new strategy to develop the highly stable RT Na-S batteries.
Collapse
Affiliation(s)
- Yu Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - XueFeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaolong Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fanfan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Zeng L, Zhu J, Chu PK, Huang L, Wang J, Zhou G, Yu XF. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204636. [PMID: 35903947 DOI: 10.1002/adma.202204636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metal-sulfur (M-S) batteries are promising energy-storage devices due to their advantages such as large energy density and the low cost of the raw materials. However, M-S batteries suffer from many drawbacks. Endowing the electrodes and electrolytes with the proper catalytic activity is crucial to improve the electrochemical properties of M-S batteries. With regard to the S cathodes, advanced electrode materials with enhanced electrocatalytic effects can capture polysulfides and accelerate electrochemical conversion and, as for the metal anodes, the proper electrode materials can provide active sites for metal deposition to reduce the deposition potential barrier and control the electroplating or stripping process. Moreover, an advanced electrolyte with desirable design can catalyze electrochemical reactions on the cathode and anode in high-performance M-S batteries. In this review, recent progress pertaining to the design of advanced electrode materials and electrolytes with the proper catalytic effects is summarized. The current progress of S cathodes and metal anodes in different types of M-S batteries are discussed and future development directions are described. The objective is to provide a comprehensive review on the current state-of-the-art S cathodes and metal anodes in M-S batteries and research guidance for future development of this important class of batteries.
Collapse
Affiliation(s)
- Linchao Zeng
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianhui Zhu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Licong Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jiahong Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
9
|
Wang M, Zhang H, Zhang W, Chen Q, Lu K. Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation. SMALL METHODS 2022; 6:e2200335. [PMID: 35560544 DOI: 10.1002/smtd.202200335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Benefiting from the merits of natural abundance, low cost, and ultrahigh theoretical energy density, the room temperature sodium-sulfur (RT NaS) batteries are regarded as one of the promising candidates for the next-generation scalable energy storage devices. However, the uncontrollable sulfur speciation pathways severely hinder its practical applications. Recently, various strategies have been employed to tune the conversion pathways of sulfur, such as physical confinement, chemical inhibition, and electrocatalysis. Herein, the recent advances in electrocatalytic effects manipulate sulfur speciation pathways in advanced RT NaS electrochemistry are reviewed, including the promotion of the nearly full conversion of long-chain polysulfides, short-chain polysulfides, and small sulfur molecules. The underlying catalytic modulation mechanism that fundamentally tunes the electrochemical pathway of sulfur species is comprehensively summarized along with the design strategies for catalytic active centers. Furthermore, the challenge and potential solutions to realize the quasi-solid conversion of sulfur are proposed to accelerate the real application of RT NaS batteries.
Collapse
Affiliation(s)
- Mingli Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hong Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
- Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenli Zhang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qianwang Chen
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
- Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
10
|
Wang Y, Huang XL, Liu H, Qiu W, Feng C, Li C, Zhang S, Liu HK, Dou SX, Wang ZM. Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na-S Batteries. ACS NANO 2022; 16:5103-5130. [PMID: 35377602 DOI: 10.1021/acsnano.2c00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries are considered to be a competitive electrochemical energy storage system, due to their advantages in abundant natural reserves, inexpensive materials, and superb theoretical energy density. Nevertheless, RT Na-S batteries suffer from a series of critical challenges, especially on the S cathode side, including the insulating nature of S and its discharge products, volumetric fluctuation of S species during the (de)sodiation process, shuttle effect of soluble sodium polysulfides, and sluggish conversion kinetics. Recent studies have shown that nanostructural designs of S-based materials can greatly contribute to alleviating the aforementioned issues via their unique physicochemical properties and architectural features. In this review, we review frontier advancements in nanostructure engineering strategies of S-based cathode materials for RT Na-S batteries in the past decade. Our emphasis is focused on delicate and highly efficient design strategies of material nanostructures as well as interactions of component-structure-property at a nanosize level. We also present our prospects toward further functional engineering and applications of nanostructured S-based materials in RT Na-S batteries and point out some potential developmental directions.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Xiang Long Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Hanwen Liu
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Weiling Qiu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Chi Feng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Ce Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Shaohui Zhang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Hua Kun Liu
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Shi Xue Dou
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P.R. China
| |
Collapse
|