1
|
Xu Y, Zhai J, Wu H, Wang H. In vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis. Nat Protoc 2024; 19:3677-3696. [PMID: 39060382 DOI: 10.1038/s41596-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Human early embryonic development is the cornerstone of a healthy baby. Abnormal early embryonic development may lead to developmental and pregnancy-related disorders. Accordingly, understanding the developmental events and mechanisms of human early embryonic development is very important. However, attempts to reveal these events and mechanisms are greatly hindered by the extreme inaccessibility of in vivo early human embryos. Fortunately, the emergence of in vitro culture (IVC) systems for mammalian embryos provides an alternative strategy. In recent years, different two-dimensional and three-dimensional IVC systems have been developed for human embryos. Ethical limitations restrict the IVC of human embryos beyond 14 days, which makes non-human primate embryos an ideal model for studying primate developmental events. Different culture systems have supported the development of monkey embryos to days postfertilization 14 and 25, respectively. The successful recapitulation of in vivo developmental events by these IVC embryos has greatly enriched our understanding of human early embryonic development, which undoubtedly helps us to develop possible strategies to predict or treat various gestation-related diseases and birth defects. In this protocol, we establish different two-dimensional and three-dimensional IVC systems for primate embryos, provide step-by-step culture procedures and notes, and summarize the advantages and limitations of different culture systems. Replicating this protocol requires a moderate level of experience in mammalian embryo IVC, and the embryo culture requires strict adherence to the procedures we have described.
Collapse
Affiliation(s)
- Yanhong Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
2
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
3
|
Affiliation(s)
- Xulun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Gao Z, Guo J, Gou B, Gu Z, Jia T, Ma S, Jiang L, Liu W, Zhou L, Gu Q. Microcarriers promote the through interface movement of mouse trophoblast stem cells by regulating stiffness. Bioact Mater 2023; 28:196-205. [PMID: 37250864 PMCID: PMC10220236 DOI: 10.1016/j.bioactmat.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Mechanical force is crucial in the whole process of embryonic development. However, the role of trophoblast mechanics during embryo implantation has rarely been studied. In this study, we constructed a model to explore the effect of stiffness changes in mouse trophoblast stem cells (mTSCs) on implantation: microcarrier was prepared by sodium alginate using a droplet microfluidics system, and mTSCs were attached to the microcarrier surface with laminin modifications, called T(micro). Compared with the spheroid, formed by the self-assembly of mTSCs (T(sph)), we could regulate the stiffness of the microcarrier, making the Young's modulus of mTSCs (367.70 ± 79.81 Pa) similar to that of the blastocyst trophoblast ectoderm (432.49 ± 151.90 Pa). Moreover, T(micro) contributes to improve the adhesion rate, expansion area and invasion depth of mTSCs. Further, T(micro) was highly expressed in tissue migration-related genes due to the activation of the Rho-associated coiled-coil containing protein kinase (ROCK) pathway at relatively similar modulus of trophoblast. Overall, our study explores the embryo implantation process with a new perspective, and provides theoretical support for understanding the effect of mechanics on embryo implantation.
Collapse
Affiliation(s)
- Zili Gao
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Guo
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bo Gou
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhen Gu
- Department of Chemistry and Biological Engineering, University of Science and Technology, Beijing, 100083, PR China
| | - Tan Jia
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sinan Ma
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- School of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liyuan Jiang
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- School of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
| | - Lixun Zhou
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
5
|
Tian J, Yang J, Chen T, Yin Y, Li N, Li Y, Luo X, Dong E, Tan H, Ma Y, Li T. Generation of Human Endometrial Assembloids with a Luminal Epithelium using Air-Liquid Interface Culture Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301868. [PMID: 37635169 PMCID: PMC10602567 DOI: 10.1002/advs.202301868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/30/2023] [Indexed: 08/29/2023]
Abstract
The endometrial lining of the uterus is essential for women's reproductive health and consists of several different types of epithelial and stromal cells. Although models such as gland-like structures (GLSs) and endometrial assembloids (EnAos) are successfully established, they lack an intact luminal epithelium, which makes it difficult to recapitulate endometrial receptivity. Here, a novel EnAo model (ALI-EnAo) is developed by combining endometrial epithelial cells (EnECs) and stromal cells (EnSCs) and using an improved matrix and air-liquid interface (ALI) culture method. ALI-EnAos exhibit intact EnSCs and glandular and luminal epithelia, which recapitulates human endometrium anatomy, cell composition, hormone-induced menstrual cycle changes, gene expression profiles, and dynamic ciliogenesis. The model suggests that EnSCs, together with the extracellular matrix and ALI culture conditions, contribute to EnAo phenotypes and characteristics reflective of the endometrial menstrual cycle. This enables to transcriptionally define endometrial cell subpopulations. It anticipates that ALI-EnAos will facilitate studies on embryo implantation, and endometrial growth, differentiation, and disease.
Collapse
Affiliation(s)
- Jiwen Tian
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Medical SchoolKunming University of Science and TechnologyKunmingYunnan650032China
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Jie Yang
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Nan Li
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Yunxiu Li
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Xingyu Luo
- Medical SchoolKunming University of Science and TechnologyKunmingYunnan650032China
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - E Dong
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Haoyang Tan
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Yanping Ma
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| |
Collapse
|
6
|
Dong R, Ma S, Zhao X, Wang B, Roy M, Yao L, Xia T, Liu Y. Recent progress of Bioinspired Hydrogel-based delivery system for endometrial repair. Front Bioeng Biotechnol 2022; 10:1013217. [PMID: 36159661 PMCID: PMC9503822 DOI: 10.3389/fbioe.2022.1013217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Endometrial injury is the main fact leading to infertility. Current treatments of endometrial injury present many problems, such as unable to achieve desired effects due to low retention and the inherent potential risk of injury. Besides, it is important to the development of bioinspired material that can mimic the natural tissue and possess native tissue topography. Hydrogel is a kind of bioinspired superhydrophilic materials with unique characteristics, such as excellent biocompatibility, biodegradability, porosity, swelling, and cross-linkage. These unique physiochemical properties of bioinspired hydrogels enable their promising application as novel delivery platform and alternative therapies for endometrial injury. In this mini review, we summarize the recent advances in bioinispred hydrogel-based delivery system for endometrial repair, including as a post-operative physical barrier and therapeutic delivery system. In addition, present status, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Rong Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Saihua Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoli Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baojuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mridul Roy
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Yao
- Hemay Zhihui Science and Technology Co. Ltd, Tianjin, China
| | - Tian Xia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|