1
|
Huang K, Liu H. Identification of drug-resistant individual cells within tumors by semi-supervised transfer learning from bulk to single-cell transcriptome. Commun Biol 2025; 8:530. [PMID: 40164749 PMCID: PMC11958800 DOI: 10.1038/s42003-025-07959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
The presence of pre-existing or acquired drug-resistant cells within the tumor often leads to tumor relapse and metastasis. Single-cell RNA sequencing (scRNA-seq) enables elucidation of the subtle differences in drug responsiveness among distinct cell subpopulations within tumors. A few methods have employed scRNA-seq data to predict the drug response of individual cells to date, but their performance is far from satisfactory. In this study, we propose SSDA4Drug, a semi-supervised few-shot transfer learning method for inferring drug-resistant cancer cells. SSDA4Drug extracts pharmacogenomic features from both bulk and single-cell transcriptomic data using semi-supervised adversarial domain adaptation. This allows us to transfer knowledge of drug sensitivity from bulk-level cell lines to single cells. We conduct extensive performance evaluation experiments across multiple independent scRNA-seq datasets, demonstrating SSDA4Drug's superior performance over current state-of-the-art methods. Remarkably, with only one or two labeled target-domain samples, SSDA4Drug significantly boosts the predictive performance of single-cell drug responses. Moreover, SSDA4Drug accurately recapitulates the temporally dynamic changes of drug responses during continuous drug exposure of tumor cells, and successfully identifies reversible drug-responsive states in lung cancer cells, which initially acquire resistance through drug exposure but later restore sensitivity during drug holidays. Also, our predicted drug responses consistently align with the developmental patterns of drug sensitivity observed along the evolutionary trajectory of oral squamous cell carcinoma cells. In addition, our derived SHAP values and integrated gradients effectively pinpoint the key genes involved in drug resistance in prostate cancer cells. These findings highlight the exceptional performance of our method in determining single-cell drug responses. This powerful tool holds the potential for identifying drug-resistant tumor cell subpopulations, paving the way for advancements in precision medicine and novel drug development.
Collapse
Affiliation(s)
- Kaishun Huang
- College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Hui Liu
- College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu, China.
| |
Collapse
|
2
|
Dai W, Chen G, Peng W, Chen C, Fu X, Liu L, Liu L, Yu N. Domain alignment method based on masked variational autoencoder for predicting patient anticancer drug response. Methods 2025; 238:61-73. [PMID: 40090506 DOI: 10.1016/j.ymeth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025] Open
Abstract
Predicting the patient's response to anticancer drugs is essential in personalized treatment plans. However, due to significant distribution differences between cell line data and patient data, models trained well on cell line data may perform poorly on patient anticancer drug response predictions. Some existing methods use transfer learning strategies to implement domain feature alignment between cell lines and patient data and leverage knowledge from cell lines to predict patient anticancer drug responses. This study proposes a domain alignment method based on masked variational autoencoders, MVAEDA, to predict patient anticancer drug responses. The model constructs multiple variational autoencoders (VAEs) and mask predictors to extract specific and domain-invariant features of cell lines and patients. Then, it masks and reconstructs the gene expression matrix, using generative adversarial training to learn domain-invariant features from the cell line and patient domains. These domain-invariant features are then used to train a classifier. Finally, the final trained model predicts the anticancer drug response in the target domain. Our model is experimentally evaluated on the clinical dataset and the preclinical dataset. The results show that our method performs better than other state-of-the-art methods.
Collapse
Affiliation(s)
- Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Gong Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Chuyue Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport, NY 14422, United States.
| |
Collapse
|
3
|
Peng L, Deng S, Li J, Zhang Y, Zhang L. Single-Cell RNA Sequencing in Unraveling Acquired Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer: New Perspectives. Int J Mol Sci 2025; 26:1483. [PMID: 40003951 PMCID: PMC11855476 DOI: 10.3390/ijms26041483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated remarkable efficacy in treating non-small cell lung cancer (NSCLC), but acquired resistance greatly reduces efficacy and poses a significant challenge to patients. While numerous studies have investigated the mechanisms underlying EGFR-TKI resistance, its complexity and diversity make the existing understanding still incomplete. Traditional approaches frequently struggle to adequately reveal the process of drug resistance development through mean value analysis at the overall cellular level. In recent years, the rapid development of single-cell RNA sequencing technology has introduced a transformative method for analyzing gene expression changes within tumor cells at a single-cell resolution. It not only deepens our understanding of the tumor microenvironment and cellular heterogeneity associated with EGFR-TKI resistance but also identifies potential biomarkers of resistance. In this review, we highlight the critical role of single-cell RNA sequencing in lung cancer research, with a particular focus on its application to exploring the mechanisms of EGFR-TKI-acquired resistance in NSCLC. We emphasize its potential for elucidating the complexity of drug resistance mechanism and its promise in informing more precise and personalized treatment strategies. Ultimately, this approach aims to advance NSCLC treatment toward a new era of precision medicine.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (L.P.); (S.D.); (J.L.); (Y.Z.)
| |
Collapse
|
4
|
Tian P, Zheng J, Qiao K, Fan Y, Xu Y, Wu T, Chen S, Zhang Y, Zhang B, Ambrogio C, Wang H. scPharm: Identifying Pharmacological Subpopulations of Single Cells for Precision Medicine in Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412419. [PMID: 39560158 PMCID: PMC11727242 DOI: 10.1002/advs.202412419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Intratumour heterogeneity significantly hinders the efficacy of anticancer therapies. Compared with drug perturbation experiments, which yield pharmacological data at the bulk cell level, single-cell RNA sequencing (scRNA-seq) technology provides a means to capture molecular heterogeneity at single-cell resolution. Here, scPharm is introduced, a computational framework that integrates pharmacological profiles with scRNA-seq data to identify pharmacological subpopulations of cells within a tumour and prioritize tailored drugs. scPharm uses the normalized enrichment scores (NESs) determined from gene set enrichment analysis to assess the distribution of cell identity genes in drug response-determined gene lists. Based on the strong correlation between the NES and drug response at single-cell resolution, scPharm successfully identified the sensitive subpopulations in ER-positive and HER2-positive human breast cancer tissues, revealed dynamic changes in the resistant subpopulation of human PC9 cells treated with erlotinib, and expanded its ability to a mouse model. Its superior performance and computational efficiency are confirmed through comparative evaluations with other single-cell prediction tools. Additionally, scPharm predicted combination drug strategies by gauging compensation or booster effects between drugs and evaluated drug toxicity in healthy cells in the tumour microenvironment. Overall, scPharm provides a novel approach for precision medicine in cancers by revealing therapeutic heterogeneity at single-cell resolution.
Collapse
Affiliation(s)
- Peng Tian
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Jie Zheng
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Keying Qiao
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yuxiao Fan
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yue Xu
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Tao Wu
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Shuting Chen
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yinuo Zhang
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Bingyue Zhang
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health SciencesMolecular Biotechnology CenterUniversity of TorinoTorino10126Italy
| | - Haiyun Wang
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
5
|
Liu X, Wang Q, Zhou M, Wang Y, Wang X, Zhou X, Song Q. DrugFormer: Graph-Enhanced Language Model to Predict Drug Sensitivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405861. [PMID: 39206872 PMCID: PMC11516065 DOI: 10.1002/advs.202405861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Drug resistance poses a crucial challenge in healthcare, with response rates to chemotherapy and targeted therapy remaining low. Individual patient's resistance is exacerbated by the intricate heterogeneity of tumor cells, presenting significant obstacles to effective treatment. To address this challenge, DrugFormer, a novel graph-augmented large language model designed to predict drug resistance at single-cell level is proposed. DrugFormer integrates both serialized gene tokens and gene-based knowledge graphs for the accurate predictions of drug response. After training on comprehensive single-cell data with drug response information, DrugFormer model presents outperformance, with higher F1, precision, and recall in predicting drug response. Based on the scRNA-seq data from refractory multiple myeloma (MM) and acute myeloid leukemia (AML) patients, DrugFormer demonstrates high efficacy in identifying resistant cells and uncovering underlying molecular mechanisms. Through pseudotime trajectory analysisunique drug-resistant cellular states associated with poor patient outcomes are revealed. Furthermore, DrugFormer identifies potential therapeutic targets, such as COX8A, for overcoming drug resistance across different cancer types. In conclusion, DrugFormer represents a significant advancement in the field of drug resistance prediction, offering a powerful tool for unraveling the heterogeneity of cellular response to drugs and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Qing Wang
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFL32611USA
| | - Minghao Zhou
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFL32611USA
| | - Yanfei Wang
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFL32611USA
| | - Xuefeng Wang
- Biostatistics and BioinformaticsH. Lee Moffitt Cancer Center and Research InstituteTampaFLUSA
| | - Xiaobo Zhou
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFL32611USA
| |
Collapse
|
6
|
Cao X, Huang YA, You ZH, Shang X, Hu L, Hu PW, Huang ZA. scPriorGraph: constructing biosemantic cell-cell graphs with prior gene set selection for cell type identification from scRNA-seq data. Genome Biol 2024; 25:207. [PMID: 39103856 DOI: 10.1186/s13059-024-03357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data space. We assume that such relationships can aid in characterizing cell type features and improving cell type recognition accuracy. To this end, we introduce scPriorGraph, a dual-channel graph neural network that integrates multi-level gene biosemantics. Experimental results demonstrate that scPriorGraph effectively aggregates feature values of similar cells using high-quality graphs, achieving state-of-the-art performance in cell type identification.
Collapse
Affiliation(s)
- Xiyue Cao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Yu-An Huang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Peng-Wei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Zhi-An Huang
- Research Office, City University of Hong Kong (Dongguan), Dongguan, 523000, China
| |
Collapse
|
7
|
Hao M, Gong J, Zeng X, Liu C, Guo Y, Cheng X, Wang T, Ma J, Zhang X, Song L. Large-scale foundation model on single-cell transcriptomics. Nat Methods 2024; 21:1481-1491. [PMID: 38844628 DOI: 10.1038/s41592-024-02305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/10/2024] [Indexed: 08/10/2024]
Abstract
Large pretrained models have become foundation models leading to breakthroughs in natural language processing and related fields. Developing foundation models for deciphering the 'languages' of cells and facilitating biomedical research is promising yet challenging. Here we developed a large pretrained model scFoundation, also named 'xTrimoscFoundationα', with 100 million parameters covering about 20,000 genes, pretrained on over 50 million human single-cell transcriptomic profiles. scFoundation is a large-scale model in terms of the size of trainable parameters, dimensionality of genes and volume of training data. Its asymmetric transformer-like architecture and pretraining task design empower effectively capturing complex context relations among genes in a variety of cell types and states. Experiments showed its merit as a foundation model that achieved state-of-the-art performances in a diverse array of single-cell analysis tasks such as gene expression enhancement, tissue drug response prediction, single-cell drug response classification, single-cell perturbation prediction, cell type annotation and gene module inference.
Collapse
Affiliation(s)
- Minsheng Hao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China
- BioMap, Beijing, China
| | | | | | | | | | | | | | - Jianzhu Ma
- Department of Electrical Engineering, Tsinghua University, Beijing, China.
- Institute for AI Industry Research, Tsinghua University, Beijing, China.
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, China.
- School of Life Sciences and School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Le Song
- BioMap, Beijing, China.
- Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE.
| |
Collapse
|
8
|
Zhang W, Maeser D, Lee A, Huang Y, Gruener RF, Abdelbar IG, Jena S, Patel AG, Huang RS. Integration of Pan-Cancer Cell Line and Single-Cell Transcriptomic Profiles Enables Inference of Therapeutic Vulnerabilities in Heterogeneous Tumors. Cancer Res 2024; 84:2021-2033. [PMID: 38581448 PMCID: PMC11178452 DOI: 10.1158/0008-5472.can-23-3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) greatly advanced the understanding of intratumoral heterogeneity by identifying distinct cancer cell subpopulations. However, translating biological differences into treatment strategies is challenging due to a lack of tools to facilitate efficient drug discovery that tackles heterogeneous tumors. Developing such approaches requires accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we developed a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening data sets. This method achieved high accuracy in separating cells into their correct cellular drug response statuses. In three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), the predicted results using scIDUC were accurate and mirrored biological expectations. In the first two tests, the framework identified drugs for cell subpopulations that were resistant to standard-of-care (SOC) therapies due to intrinsic resistance or tumor microenvironmental effects, and the results showed high consistency with experimental findings from the original studies. In the third test using newly generated SOC therapy-resistant cell lines, scIDUC identified efficacious drugs for the resistant line, and the predictions were validated with in vitro experiments. Together, this study demonstrates the potential of scIDUC to quickly translate scRNA-seq data into drug responses for individual cells, displaying the potential as a tool to improve the treatment of heterogenous tumors. SIGNIFICANCE A versatile method that infers cell-level drug response in scRNA-seq data facilitates the development of therapeutic strategies to target heterogeneous subpopulations within a tumor and address issues such as treatment failure and resistance.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Danielle Maeser
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Adam Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Robert F. Gruener
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Israa G. Abdelbar
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
- Clinical Pharmacy Practice Department, The British University in Egypt, El Sherouk, 11837, Egypt
| | - Sampreeti Jena
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Anand G. Patel
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - R. Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Zhou X, Qian Y, Ling C, He Z, Shi P, Gao Y, Sui X. An integrated framework for prognosis prediction and drug response modeling in colorectal liver metastasis drug discovery. J Transl Med 2024; 22:321. [PMID: 38555418 PMCID: PMC10981831 DOI: 10.1186/s12967-024-05127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM. METHODS This study developed two liver metastasis-associated prognostic signatures based on differentially expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in vivo experiments were performed to verify the efficacy of these compounds. RESULTS These two prognostic models exhibited superior performance compared to previously reported ones. Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver metastasis mouse model. CONCLUSIONS This study highlights the significance of developing specialized prognostication approaches and investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response model provides a new drug discovery strategy for translational medicine in precision oncology.
Collapse
Affiliation(s)
- Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Yuzhen Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Ling
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Peishang Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
| |
Collapse
|
10
|
Zhang W, Maeser D, Lee A, Huang Y, Gruener RF, Abdelbar IG, Jena S, Patel AG, Huang RS. Inferring therapeutic vulnerability within tumors through integration of pan-cancer cell line and single-cell transcriptomic profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564598. [PMID: 37961545 PMCID: PMC10634928 DOI: 10.1101/2023.10.29.564598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Single-cell RNA sequencing greatly advanced our understanding of intratumoral heterogeneity through identifying tumor subpopulations with distinct biologies. However, translating biological differences into treatment strategies is challenging, as we still lack tools to facilitate efficient drug discovery that tackles heterogeneous tumors. One key component of such approaches tackles accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we present a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. Our method achieves high accuracy, with predicted sensitivities easily able to separate cells into their true cellular drug resistance status as measured by effect size (Cohen's d > 1.0). More importantly, we examine our method's utility with three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), and in each our predicted results are accurate and mirrored biological expectations. In the first two, we identified drugs for cell subpopulations that are resistant to standard-of-care (SOC) therapies due to intrinsic resistance or effects of tumor microenvironments. Our results showed high consistency with experimental findings from the original studies. In the third test, we generated SOC therapy resistant cell lines, used scIDUC to identify efficacious drugs for the resistant line, and validated the predictions with in-vitro experiments. Together, scIDUC quickly translates scRNA-seq data into drug response for individual cells, displaying the potential as a first-line tool for nuanced and heterogeneity-aware drug discovery.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Danielle Maeser
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Adam Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Robert F Gruener
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Israa G Abdelbar
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
- Clinical Pharmacy Practice Department, The British University in Egypt, El Sherouk, 11837, Egypt
| | - Sampreeti Jena
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Anand G Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - R Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
11
|
Tang Z, Liu X, Li Z, Zhang T, Yang B, Su J, Song Q. SpaRx: elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Brief Bioinform 2023; 24:bbad338. [PMID: 37798249 PMCID: PMC10555713 DOI: 10.1093/bib/bbad338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Spatial cellular authors heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic resistance. Recent emerging spatial technologies such as CosMx, MERSCOPE and Xenium delineate the spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the superior and robust performance of SpaRx at different dropout rates, noise levels and transcriptomics coverage. Further application of SpaRx to the state-of-the-art single-cell spatial transcriptomics data reveals that tumor cells in different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms underpinning drug resistance and identifies personalized drug targets and effective drug combinations.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Florida, USA
| |
Collapse
|
12
|
Tang Z, Liu X, Li Z, Zhang T, Yang B, Su J, Song Q. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551911. [PMID: 37577665 PMCID: PMC10418183 DOI: 10.1101/2023.08.03.551911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Spatial cellular heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic resistance. Recent emerging spatial technologies such as CosMx SMI, MERSCOPE, and Xenium delineate the spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the superior and robust performance of SpaRx at different dropout rates, noise levels, and transcriptomics coverage. Further application of SpaRx to the state-of-art single-cell spatial transcriptomics data reveals that tumor cells in different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms underpinning drug resistance, and identifies personalized drug targets and effective drug combinations. Key Points We have developed a novel graph-based domain adaption model named SpaRx, to reveal the heterogeneity of spatial cellular response to different types of drugs, which bridges the gap between pharmacogenomics knowledgebase and single-cell spatial transcriptomics data.SpaRx is developed tailored for single-cell spatial transcriptomics data and is provided available as a ready-to-use open-source software, which demonstrates high accuracy and robust performance.SpaRx uncovers that tumor cells located in different areas within tumor lesion exhibit varying levels of sensitivity or resistance to drugs. Moreover, SpaRx reveals that tumor cells interact with themselves and the surrounding microenvironment to form an ecosystem capable of drug resistance.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Qianqian Song
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, North Carolina, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA
| |
Collapse
|