1
|
Wu Y, An C, Guo Y, Kang L, Wang Y, Wan H, Tang H, Ma Q, Yang C, Xu M, Zhao Y, Jiang N. Multiscale Structural Control by Matrix Engineering for Polydimethylsiloxane Filled Graphene Woven Fabric Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410148. [PMID: 39757495 DOI: 10.1002/smll.202410148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Elastomer cure shrinkage during composite fabrication often induces wrinkling in conductive networks, significantly affecting the performance of flexible strain sensors, yet the specific roles of such wrinkles are not fully understood. Herein, a highly sensitive polydimethylsiloxane-filled graphene woven fabric (PDMS-f-GWF) strain sensor by optimizing the PDMS cure shrinkage through careful adjustment of the base-to-curing-agent ratio is developed. This sensor achieves a gauge factor of ∼700 at 25% strain, which is over 6 times higher than sensors using commercially formulated PDMS. This enhanced sensing performance is attributed to multiscale structural control of the graphene network, enabled by precisely tuned cure shrinkage of PDMS. Using in situ scanning electron microscopy, X-ray scattering, and Raman spectroscopy, an optimized PDMS base-to-curing-agent ratio of 10:0.8 is show that enables interconnected structural changes from atomic to macroscopic scales, including larger "real" strain within the graphene lattice, enhanced flattening of graphene wrinkles, and increased crack density. These findings highlight the critical role of elastomer shrinkage in modulating the multiscale structure of conductive networks, offering new insights into matrix engineering strategies that advance the sensing performance of elastomer-based flexible strain sensors.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liying Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haixiao Wan
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianyi Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ming Xu
- School of Materials Science and Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yixin Zhao
- Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology, Beijing, 100083, China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
2
|
Li W, Farhadi B, Liu M, Wang P, Wang J, Zhang Y, Ma G, Huang R, Zhao J, Wang K, Tong Y. Interface engineering based NiCoMoO 4/Ti 3C 2T x MXene heterostructure for high-performance flexible supercapacitors. J Colloid Interface Sci 2025; 677:541-550. [PMID: 39154446 DOI: 10.1016/j.jcis.2024.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
The advancement of interface engineering has demonstrated remarkable efficacy in overcoming the primary impediment associated with sluggish reaction kinetics in supercapacitor electrodes. In this investigation, we employed a facile co-precipitation method to synthesize NiCoMoO4/MXene heterostructures utilizing Ti3C2Tx MXene nanosheets as carriers. This heterostructure inhibits the restacking of MXene nanosheets and simultaneously enhances the exposure of electrochemically active sites in NiCoMoO4 nanorods, thereby mitigating the reduction in specific capacitance resulting from volumetric fluctuations. The NiCoMoO4/MXene electrode, possessing pseudo-capacitance properties, demonstrates an impressive level of specific capacitance, exceptional performance across various charging rates, and consistent behavior throughout repeated cycles. By optimizing the mass ratio, this electrode achieves a specific capacity of 1900 F/g under a current density of 1 A/g. Even after enduring 10,000 cycles at a significantly higher current density of 5 A/g, it still maintains an impressive retention rate of 94.73 %. Our density functional theory (DFT) calculations indicate that the enhanced electrochemical performance can be attributed to the improved electronic coupling within the NiCoMoO4/MXene heterostructure. The integration of NiCoMoO4/MXene cathode and activated carbon (AC) anode with an alkaline gel electrolyte containing potassium ferricyanide in flexible quasi-solid-state supercapacitors (FSSCs) results in exceptional electrochemical performance and flexibility. These FSSCs demonstrate a maximum energy density of 72.89 Wh kg-1 at a power density of 850 W kg-1, while maintaining an impressive power output of 16,780 W kg-1 with an energy density of 37.28 Wh kg-1. Based on these outstanding properties, it is evident that the NiCoMoO4/MXene heterojunction possesses significant advantages as electrode material for supercapacitors, and the fabricated FSSCs devices pave a new pathway for flexible electronic devices.
Collapse
Affiliation(s)
- Wei Li
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bita Farhadi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Liu
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Peiru Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayi Wang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yaoyao Zhang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Guoxiang Ma
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Runnan Huang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jiayi Zhao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kai Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yao Tong
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Park A, Kim S, Jung JY, Kim W, Seo MY, Kim S, Nam C, Lee WB, Kim Y. Characterization of interactions in battery slurry via MD simulation: Influence on miscibility, morphology, and dispersion with varying ACN content in HNBR. J Chem Phys 2024; 161:234905. [PMID: 39679525 DOI: 10.1063/5.0244629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
This paper investigates the phase behaviors, morphology changes, and degree of dispersion of a multi-component cathode battery slurry system. The slurry comprises polyvinylidene fluoride (PVDF) as the binder, hydrogenated nitrile butadiene rubber (HNBR) as the dispersant with varying acrylonitrile (ACN) content, N-methyl-2-pyrrolidone (NMP) as the solvent, and carbon nanotubes/graphene (CNTs/GRA) as the conductive agent. Several analytical methods, including visualized imaging, solubility parameters, radial distribution function (RDF) analysis, β phase PVDF analysis, near-atom analysis, and potential of mean force (PMF) analysis, were employed to compare the slurry's characteristics. The results indicate that an increase in ACN content in HNBR improves the miscibility between HNBR and PVDF, while HNBR with low ACN content results in a crystalline structure and phase separation of HNBR and PVDF. Conversely, increasing the ACN content in HNBR has a negative impact, making it a poorer dispersant itself. These findings provide essential insights into effectively regulating the phase behavior, miscibility, and dispersion ability of multi-component slurry systems, thereby enhancing the performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Anseong Park
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seungtae Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Je-Yeon Jung
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - WooJin Kim
- Department of Materials Science and Engineering, Kookmin University, Seoul, Republic of Korea
| | - Min Young Seo
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sangdeok Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Chongyong Nam
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhao Z, Shen Y, Hu R, Xu D. Advances in flexible ionic thermal sensors: present and perspectives. NANOSCALE 2024; 17:187-213. [PMID: 39575937 DOI: 10.1039/d4nr03423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic thermal sensors (ITSs) represent a promising frontier in sensing technology, offering unique advantages over conventional electronic sensors. Comprising a polymer matrix and electrolyte, these sensors possess inherent flexibility, stretchability, and biocompatibility, allowing them to establish stable and intimate contact with soft surfaces without inducing mechanical or thermal stress. Through an ion migration/dissociation mechanism similar to biosensing, ITSs ensure low impedance contact and high sensitivity, especially in physiological monitoring applications. This review provides a comprehensive overview of ionic thermal sensing mechanisms, contrasting them with their electronic counterparts. Additionally, it explores the intricacy of the sensor architecture, detailing the roles of active sensing elements, stretchable electrodes, and flexible substrates. The decoupled sensing mechanisms for skin-inspired multimodal sensors are also introduced based on several representative examples. The latest applications of ITS are categorized into ionic skin (i-skin), healthcare, spatial thermal perception, and environment detection, regarding their materials, structures, and operation modes. Finally, the perspectives of ITS research are presented, emphasizing the significance of standardized sensing parameters and emerging requirements for practical applications.
Collapse
Affiliation(s)
- Zehao Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Yun Shen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| | - Run Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Applied Physics, Kyung Hee University, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
| | - Dongyan Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China.
| |
Collapse
|
5
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
6
|
Xian BC, Shen S, Yang T, Qiu Z, Zhang Y, Cao F, Liang X, Chen M, He X, Xia Y, Wang C, Wan W, Zhang W, Xia X, Tu J, Zhou J. Roller-like Spore Carbon Sphere-Orientated Graphene Fibers Prepared via Rheological Engineering for Lithium Sulfur Batteries. ACS NANO 2024; 18:27451-27464. [PMID: 39313355 DOI: 10.1021/acsnano.4c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Flexible batteries with large energy densities, lightweight nature, and high mechanical strength are considered as an eager goal for portable electronics. Herein, we first propose free-standing graphene fiber electrodes containing roller-like orientated spore carbon spheres via rheological engineering. With the help of the orientated microfluidic cospinning technology and the plasma reduction method, spore carbon spheres are self-assembled and orientedly dispersed into numerous graphene flakes, forming graphene fiber electrodes enriched with internal rolling woven structures, which cannot only enhance the electrical contact between active materials but also effectively improve the mechanical strength and structure stability of graphene fiber electrodes. When the designed graphene fibers are combined with the active sulfur cathode and lithium metal anode, the assembled flexible lithium sulfur batteries possess superior electrochemical performance with high capacity (>1000 mA h g-1) and excellent cycling life as well as good mechanical properties. According to density functional theory and COMSOL simulations, the roller-like spore carbon sphere-orientated graphene fiber hosts provide reinforced trapping-catalytic-conversion behavior to soluble polysulfides and nucleation active sites to lithium metal, thus synergistically suppressing the shuttle effect of polysulfides at the cathode side and lithium dendrite growth at the anode side, thereby boosting the whole electrochemical properties of lithium sulfur batteries.
Collapse
Affiliation(s)
- By Chunxiang Xian
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310016, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenghui Shen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianqi Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhong Qiu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611371, China
| | - Feng Cao
- Department of Engineering Technology, Huzhou College, Huzhou 313000, P. R. China
| | - Xinqi Liang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611371, China
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Xinping He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Xia
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen Wang
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Zhejiang, Hangzhou 311215, P. R. China
| | - Wangjun Wan
- Zhejiang Academy of Science and Technology for Inspection & Quarantine, Zhejiang, Hangzhou 311215, P. R. China
| | - Wenkui Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinhui Xia
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310016, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangping Tu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou 310016, China
| |
Collapse
|
7
|
Cai D, Zheng F, Li Y, Zhang C, Qin Z, Li W, Liu Y, Li A, Zhang J. Design of Coatings for Sulfur-Based Cathode Materials in Lithium-Sulfur Batteries: A review. Chem Asian J 2024; 19:e202400099. [PMID: 38860661 DOI: 10.1002/asia.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Lithium-sulfur batteries (LSBs) are considered next-generation energy storage and conversion solutions owing to their high theoretical specific capacity and the high abundance/low-cost of sulfur-based cathode materials. However, LSBs still encounter significant challenges, including the low conductivities of sulfur-based materials, severe volumetric expansion of sulfur during the discharge process, and the persistent "shuttle effect" of polysulfides. In recent years, a tremendous amount of research has been conducted to address the above challenges by developing coating and compositing materials and corresponding fabrication strategies for sulfur-based cathode materials. In this study, the surface coating, compositing materials, and fabrication methodologies of LSB cathodes are comprehensively reviewed in terms of advanced materials, structure/component characterization, functional mechanisms, and performance validation. Some technical challenges are analyzed in detail, and possible future research directions are proposed to overcome the challenges toward practical applications of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Dandan Cai
- College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Feng Zheng
- College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Ying Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
| | - Caizhi Zhang
- College of Mechanical and Vehicle Engineering, The State Key Laboratory of Mechanical Transmissions, Chongqing Automotive Collaborative Innovation Center, Chongqing University, Chongqing, 400044, China
| | - Ziwei Qin
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, Zhejiang, 312000, China
| | - Wenxian Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China
- School of Materials Science and Engineering/Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- College of Sciences, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, Zhejiang, 312000, China
| | - Aijun Li
- Shaoxing Institute of Technology, Shanghai University, Shaoxing, Zhejiang, 312000, China
| | - Jiujun Zhang
- College of Sciences, Shanghai University, Shanghai, 200444, China
- College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
8
|
Rehman WU, Manj RZA, Ma Y, Yang J. The Promising Potential of Gallium Based Liquid Metals for Energy Storage. Chempluschem 2024; 89:e202300767. [PMID: 38696273 DOI: 10.1002/cplu.202300767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/04/2024]
Abstract
Energy storage devices play a crucial role in various applications, such as powering electronics, power backup for homes and businesses, and support for the integration of renewable energy sources into electrical grid applications. Electrode materials for energy storage devices are preferred to have a flexible nature, conductive, better capacity, and low-toxicity. Using Gallium based liquid metal alloys, such as Eutectic Gallium-Indium (EGaIn), Eutectic Gallium-Tin (EGaSn), and Eutectic Gallium-Indium-Tin (EGaInSn), as electrode materials play very important role in energy storage devices. These liquid metals have some interesting properties with a self-healing nature, high mechanical stability, compatibility with various materials, fluidity, low young's modulus, high electrical and thermal conductivity. Those properties have made it suitable to be used in various energy storage devices. In this mini review, we have concisely described the advantages and challenges of using liquid metal as electrode materials for various energy storage devices.
Collapse
Affiliation(s)
- Waheed Ur Rehman
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Rana Zafar Abbas Manj
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
9
|
Xiong Y, Wang Z, Yan X, Li T, Jing S, Hu T, Jin H, Liu X, Kong W, Huo Y, Ge X. Elastic Polyurethane as Stress-Redistribution-Adhesive-Layer (SRAL) for Directly Integrated High-Energy-Density Flexible Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401635. [PMID: 38828658 PMCID: PMC11304273 DOI: 10.1002/advs.202401635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/11/2024] [Indexed: 06/05/2024]
Abstract
The low mechanical reliability and integration failure are key challenges hindering the commercialization of geometrically flexible batteries. This work proposes that the failure of directly integrating flexible batteries using traditional rigid adhesives is primarily due to the mismatch between the generated stress at the adhesive/substrate interface, and the maximum allowable stress. Accordingly, a stress redistribution adhesive layer (SRAL) strategy is conceived by using elastic adhesive to redistribute the generated stress. The function mechanism of the SRAL strategy is confirmed by theoretical finite element analysis. Experimentally, a polyurethane (PU) type elastic adhesive (with maximum strain of 1425%) is synthesized and used as the SRAL to integrate rigid cells on different flexible substrates to fabricate directly integrated flexible battery with robust output under various harsh environments, such as stretching, twisting, and even bending in water. The SRAL strategy is expected to be generally applicable in various flexible devices that involve the integration of rigid components onto flexible substrates.
Collapse
Affiliation(s)
- Yige Xiong
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Zhongjie Wang
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Xiaohui Yan
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Taibai Li
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Siqi Jing
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Tao Hu
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Huixin Jin
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Xuncheng Liu
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Weibo Kong
- College of Polymer Science and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yonglin Huo
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| | - Xiang Ge
- Department of Materials and MetallurgyGuizhou UniversityGuiyangGuizhou550025P. R. China
| |
Collapse
|
10
|
Stakem KG, Leslie FJ, Gregory GL. Polymer design for solid-state batteries and wearable electronics. Chem Sci 2024; 15:10281-10307. [PMID: 38994435 PMCID: PMC11234879 DOI: 10.1039/d4sc02501f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Solid-state batteries are increasingly centre-stage for delivering more energy-dense, safer batteries to follow current lithium-ion rechargeable technologies. At the same time, wearable electronics powered by flexible batteries have experienced rapid technological growth. This perspective discusses the role that polymer design plays in their use as solid polymer electrolytes (SPEs) and as binders, coatings and interlayers to address issues in solid-state batteries with inorganic solid electrolytes (ISEs). We also consider the value of tunable polymer flexibility, added capacity, skin compatibility and end-of-use degradability of polymeric materials in wearable technologies such as smartwatches and health monitoring devices. While many years have been spent on SPE development for batteries, delivering competitive performances to liquid and ISEs requires a deeper understanding of the fundamentals of ion transport in solid polymers. Advanced polymer design, including controlled (de)polymerisation strategies, precision dynamic chemistry and digital learning tools, might help identify these missing fundamental gaps towards faster, more selective ion transport. Regardless of the intended use as an electrolyte, composite electrode binder or bulk component in flexible electrodes, many parallels can be drawn between the various intrinsic polymer properties. These include mechanical performances, namely elasticity and flexibility; electrochemical stability, particularly against higher-voltage electrode materials; durable adhesive/cohesive properties; ionic and/or electronic conductivity; and ultimately, processability and fabrication into the battery. With this, we assess the latest developments, providing our views on the prospects of polymers in batteries and wearables, the challenges they might address, and emerging polymer chemistries that are still relatively under-utilised in this area.
Collapse
Affiliation(s)
- Kieran G Stakem
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Freddie J Leslie
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Georgina L Gregory
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
11
|
Xie S, Fu L, Ding Y, Wang Q, He C, Xu W, Wang Q, Zhong Y, Fan X, Yang M. Electrochemical C-H Mono-/Multi-Bromination Regulation of N-Sulfonylanilines on a Cost-Effective Carbon Fiber Electrode and Its Prospective Electroactive Molecule Screening. J Org Chem 2024; 89:6759-6769. [PMID: 38683949 DOI: 10.1021/acs.joc.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Electrochemical C-H mono/multi-bromination regulation of N-sulfonylanilines on the cost-effective CF electrode is described. This reaction proceeds smoothly under mild conditions with a broad substrate scope, affording diverse mono/multi-brominated anilines in moderate to good yields. Mechanism study reveals that this transformation involves anodic oxidation, aromatic electrophilic substitution, and deprotonation. Preliminary electroactive molecule screening results in its prospective application in electroactive MBs for electrochemical biosensors.
Collapse
Affiliation(s)
- Shuchun Xie
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Li Fu
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Yechun Ding
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Qi Wang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Chen He
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Xu
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Qing Wang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Yingfang Zhong
- Academic Affairs Office, Gannan Medical University, Ganzhou 341000, China
| | - Xiaona Fan
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Min Yang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
12
|
Xu H, Zhang Y, Wang Z, Jia Y, Yang X, Gao M. Design superhydrophobic no-noble metal substrates for highly sensitive and signal stable SERS sensing. J Colloid Interface Sci 2024; 660:42-51. [PMID: 38241870 DOI: 10.1016/j.jcis.2024.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with a broad range of potential applications in fields such as biomedicine, electrochemistry, and hazardous chemicals. However, it is challenging to develop SERS substrates that are both good sensitive and signal stable. Here we designed a superhydrophobic Nd doped MoS2 uniformly assembled on the activated carbon fiber cloth (CFC) to avoid the coffee ring effect and enrich the analyte, improving the enhancement factor (EF) to 3.9 × 109 and pesticide endosulfan (<10-10) analyte detection. We demonstrate our strategy by density-functional theory (DFT) calculations confirming that both adsorption energy and density of states are enhanced after doping Nd leading to SERS enhancement. Beside DFT calculations, our experiments also provide an effective means to demonstrate that the high SERS sensitivity is based on multiple charge transfer processes combined with the activated carbon cloth. Our results address the limitations of low sensitivity and limit of detection (LOD) of semiconductor SERS substrates for trace analysis and are a step towards practical applications.
Collapse
Affiliation(s)
- Hongquan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Yuchen Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Zhong Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Yuehan Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Xiaotian Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China; Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, PR China.
| |
Collapse
|
13
|
Liang H, Zeng Z, Qiao Z, Li Y, Wang C. The heterointerface effect to boost the catalytic performance of single atom catalysts for sulfur conversion in lithium-sulfur batteries. Phys Chem Chem Phys 2024; 26:5858-5867. [PMID: 38305023 DOI: 10.1039/d3cp05883b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Lithium-sulfur (Li-S) batteries are considered as one of the promising next-generation energy storage devices due to their characteristics of high energy density and low cost. However, the shuttle effect and sluggish conversion of lithium polysulfide (LiPs) have hindered their commercial applications. To address these issues, in our previous works, we have screened several highly efficient single atom catalysts (SACs) (MN4@G, M = V, Mo and W) with atomically dispersed transition metal atoms supported by nitrogen doped graphene based on high throughput calculations. Nevertheless, they still suffer from low loading of metal centers and unsatisfactory capability for accelerating the reaction kinetics. To tackle such problems, based on first-principles calculations, we systematically investigated the heterointerface effect on the catalytic performance of such three MN4@G toward sulfur conversion upon forming heterostructures with 5 typical two-dimensional materials of TiS2, C3N4, BN, graphene and reduced graphene oxide. Guided by efficient descriptors proposed in our previous work, we screened VN4@G/TiS2, MoN4@G/TiS2 and WN4@G/TiS2 possessing low Li2S decomposition barriers of 0.54, 0.44 and 0.41 eV, respectively. They also possess enhanced capabilities for catalyzing the sulfur reduction reaction as well as stabilizing soluble LiPs. More interestingly, the heterointerface can enhance the capability of the carbon atoms far away from the metal centers for trapping LiPs. This work shows that introducing a heterointerface is a promising strategy to boost the performance of SACs in Li-S batteries.
Collapse
Affiliation(s)
- Haikuan Liang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Zhihao Zeng
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Zhengping Qiao
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Yan Li
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Chengxin Wang
- State key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
14
|
Jena S, Tran DT, Park S, Islam M, Kim NH, Lee JH. An Ultra-Flexible Sodium-Ion Full Cell with High Energy/Power Density and Unprecedented Structural Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305088. [PMID: 37817353 DOI: 10.1002/smll.202305088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Indexed: 10/12/2023]
Abstract
Futuristic wearable electronics desperately need power sources with similar flexibility and durability. In this regard, the authors, therefore, propose a scalable PAN-PMMA blend-derived electrospinning protocol to fabricate free-standing electrodes comprised of cobalt hexacyanoferrate nanocube cathode and tin metal organic framework-derived nanosphere anode, respectively, for flexible sodium-ion batteries. The resulting unique inter-networked nanofiber mesh offers several advantages such as robust structural stability towards repeated bending and twisting stresses along with appreciable electronic/ionic conductivity retention without any additional post-synthesis processing. The fabricated flexible sodium ion full cells deliver a high working voltage of 3.0 V, an energy density of 273 Wh·kg-1 , and a power density of 2.36 kW·kg-1 . The full cells retain up to 86.73% of the initial capacity after 1000 cycles at a 1.0 C rate. After intensive flexibility tests, the full cells also retain 78.26% and 90.78% of the initial capacity after 1000 bending and twisting cycles (5 mm radius bending and 40o axial twisting), respectively. This work proves that the proposed approach can also be employed to construct similar robust, free-standing nanofiber mesh-based electrodes for mass-producible, ultra-flexible, and durable sodium ion full cells with commercial viability.
Collapse
Affiliation(s)
- Sambedan Jena
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Sehwi Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Muhaiminul Islam
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
- Center for Carbon Composite Materials, Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| |
Collapse
|
15
|
Zhou Y, Yin L, Xiang S, Yu S, Johnson HM, Wang S, Yin J, Zhao J, Luo Y, Chu PK. Unleashing the Potential of MXene-Based Flexible Materials for High-Performance Energy Storage Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304874. [PMID: 37939293 PMCID: PMC10797478 DOI: 10.1002/advs.202304874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Indexed: 11/10/2023]
Abstract
Since the initial discovery of Ti3 C2 a decade ago, there has been a significant surge of interest in 2D MXenes and MXene-based composites. This can be attributed to the remarkable intrinsic properties exhibited by MXenes, including metallic conductivity, abundant functional groups, unique layered microstructure, and the ability to control interlayer spacing. These properties contribute to the exceptional electrical and mechanical performance of MXenes, rendering them highly suitable for implementation as candidate materials in flexible and wearable energy storage devices. Recently, a substantial number of novel research has been dedicated to exploring MXene-based flexible materials with diverse functionalities and specifically designed structures, aiming to enhance the efficiency of energy storage systems. In this review, a comprehensive overview of the synthesis and fabrication strategies employed in the development of these diverse MXene-based materials is provided. Furthermore, an in-depth analysis of the energy storage applications exhibited by these innovative flexible materials, encompassing supercapacitors, Li-ion batteries, Li-S batteries, and other potential avenues, is conducted. In addition to presenting the current state of the field, the challenges encountered in the implementation of MXene-based flexible materials are also highlighted and insights are provided into future research directions and prospects.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of TechnologyXidian UniversityHangzhou311200China
- School of Mechano‐Electronic EngineeringXidian UniversityXi'an710071China
| | - Liting Yin
- Department of Aerospace and Mechanical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Shuangfei Xiang
- School of Materials Science and Engineering and Institute of Smart Fiber MaterialsZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Sheng Yu
- Department of ChemistryWashington State UniversityPullmanWA99164USA
| | | | - Shaolei Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
| | - Jie Zhao
- Molecular Engineering of PolymersDepartment of Material ScienceFudan UniversityShanghai200438China
| | - Yang Luo
- Department of MaterialsETH ZurichZurich8093Switzerland
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong Kong999077China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongKowloonHong Kong999077China
| |
Collapse
|
16
|
Wu Q, Xie T, Zhang L, Ding H, Gao H, Jiang J, Xu G. N,S co-doped porous carbon with Co 9S 8 prepared with a Co-FF-derived Co 3O 4 template: a bi-functional electrocatalyst for rechargeable zinc-air batteries. Dalton Trans 2023; 52:14435-14442. [PMID: 37771313 DOI: 10.1039/d3dt02439c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
To achieve broad commercialization of rechargeable metal-air batteries, the development of non-precious metal-based bi-functional oxygen electrocatalysts is critical. In this study, we prepared N,S co-doped porous carbon materials containing Co9S8 nanoparticles (Co9S8/NSC) through a one-step pyrolysis process. The process involved the pyrolysis of a polydopamine (PDA) coated Co-formic acid framework (Co-FF) derived Co3O4 and thiourea. The improved catalyst Co9S8/NSC-1 exhibited satisfactory long-term durability and superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity, the half-wave potential (E1/2) of the ORR reached 0.83 V, and the OER overpotential at 10 mA cm-2 (η10) was 300 mV. The zinc-air battery (ZAB) based on Co9S8/NSC-1 assembly had a maximum power density of 102.0 mW cm-2 and the cycle life reached 500 cycles. The material preparation method was simple, environmentally friendly and inexpensive, providing a feasible strategy for the development of non-precious metal-based electrocatalysts.
Collapse
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Tao Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, Xinjiang, PR China
| | - Hui Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Heju Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Jiahui Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| |
Collapse
|
17
|
Cao W, Li H, Ma H, Fan J, Tian X. Achieving desirable charge transport by porous frame engineering for superior 3D printed rechargeable Ni-Zn alkaline batteries. Chem Sci 2023; 14:9145-9153. [PMID: 37655041 PMCID: PMC10466287 DOI: 10.1039/d3sc02826g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Rechargeable 3D printed batteries with extraordinary electrochemical potential are typical contenders as one of the promising energy storage systems. Low-cost, high-safety, and excellent rechargeable aqueous alkaline batteries have drawn extensive interest. But their practical applications are severely hampered by poor charge carrier transfer and limited electrochemical activity at high loading. Herein, we report a unique structure-based engineering strategy in 3D porous frames using a feasible 3D printing technique and achieve 3D printed full battery devices with outstanding electrochemical performance. By offering a 3D porous network to provide prominently stereoscopic support and optimize the pore structure of electrodes, the overall charge carrier transport of engineered 3D printed Ni-Zn alkaline batteries (E3DP-NZABs) is greatly enhanced, which is directly demonstrated through a single-wired characterization platform. The obtained E3DP-NZABs deliver a high areal capacity of 0.34 mA h cm-2 at 1.2 mA cm-2, and an outstanding capacity retention of 96.2% after 1500 cycles is also exhibited with an optimal electrode design. Particularly, parameter changes such as a decrease in pore sizes and an increase in 3D network thickness are favorable to resultant electrochemical performance. This work may represent a vital step to promote the practical application progress of alkaline batteries.
Collapse
Affiliation(s)
- Wenyu Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Haojie Li
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Hui Ma
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Jintao Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xiaocong Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
18
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
19
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Microplotter Printing of a Miniature Flexible Supercapacitor Electrode Based on Hierarchically Organized NiCo 2O 4 Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4202. [PMID: 37374386 DOI: 10.3390/ma16124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
The hydrothermal synthesis of a nanosized NiCo2O4 oxide with several levels of hierarchical self-organization was studied. Using X-ray diffraction analysis (XRD) and Fourier-transform infrared (FTIR) spectroscopy, it was determined that under the selected synthesis conditions, a nickel-cobalt carbonate hydroxide hydrate of the composition M(CO3)0.5(OH)·0.11H2O (where M-Ni2+ and Co2+) is formed as a semi-product. The conditions of semi-product transformation into the target oxide were determined by simultaneous thermal analysis. It was found by means of scanning electron microscopy (SEM) that the main powder fraction consists of hierarchically organized microspheres of 3-10 μm in diameter, and individual nanorods are observed as the second fraction of the powder. Nanorod microstructure was further studied by transmission electron microscopy (TEM). A hierarchically organized NiCo2O4 film was printed on the surface of a flexible carbon paper (CP) using an optimized microplotter printing technique and functional inks based on the obtained oxide powder. It was shown by XRD, TEM, and atomic force microscopy (AFM) that the crystalline structure and microstructural features of the oxide particles are preserved when deposited on the surface of the flexible substrate. It was found that the obtained electrode sample is characterized by a specific capacitance value of 420 F/g at a current density of 1 A/g, and the capacitance loss during 2000 charge-discharge cycles at 10 A/g is 10%, which indicates a high material stability. It was established that the proposed synthesis and printing technology enables the efficient automated formation of corresponding miniature electrode nanostructures as promising components for flexible planar supercapacitors.
Collapse
Affiliation(s)
- Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Philipp Yu Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| |
Collapse
|