1
|
Li HX, Gong YW, Yan PJ, Xu Y, Qin G, Wen WP, Teng FY. Revolutionizing head and neck squamous cell carcinoma treatment with nanomedicine in the era of immunotherapy. Front Immunol 2024; 15:1453753. [PMID: 39676875 PMCID: PMC11638222 DOI: 10.3389/fimmu.2024.1453753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor globally. Despite advancements in treatment methods, the overall survival rate remains low due to limitations such as poor targeting and low bioavailability, which result in the limited efficacy of traditional drug therapies. Nanomedicine is considered to be a promising strategy in tumor therapy, offering the potential for maximal anti-tumor effects. Nanocarriers can overcome biological barriers, enhance drug delivery efficiency to targeted sites, and minimize damage to normal tissues. Currently, various nano-carriers for drug delivery have been developed to construct new nanomedicine. This review aims to provide an overview of the current status of HNSCC treatment and the necessity of nanomedicine in improving treatment outcomes. Moreover, it delves into the research progress of nanomedicine in HNSCC treatment, with a focus on enhancing radiation sensitivity, improving the efficacy of tumor immunotherapy, effectively delivering chemotherapy drugs, and utilizing small molecule inhibitors. Finally, this article discussed the challenges and prospects of applying nanomedicine in cancer treatment.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yu-Wen Gong
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei-Ping Wen
- Department of Otolaryngology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Department of Endocrinology and Metabolism, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Pan Q, Tang H, Xie L, Zhu H, Wu D, Liu R, He B, Pu Y. Recent advances in phototherapeutic nanosystems for oral cancer. J Mater Chem B 2024; 12:11560-11572. [PMID: 39420670 DOI: 10.1039/d4tb01919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oral cancer is a significant global health challenge, with conventional treatments often resulting in substantial side effects and limited effectiveness. Phototherapy, encompassing photodynamic and photothermal therapy, presents a promising alternative by selectively targeting and destroying cancer cells with minimal systemic toxicity. However, issues such as insufficient light penetration and limited tumor specificity have restricted their clinical use. Recent advancements in nanosystems have addressed these challenges by enhancing the solubility, stability, and tumor-targeting capabilities of phototherapy agents. This review delves into the latest advancements in phototherapeutic nanosystems for oral cancer, focusing on the design of innovative nanoformulations and targeted delivery strategies. Additionally, it summarizes recent approaches to enhance the efficacy of photodynamic therapy for oral cancer and examines phototherapy-based combination treatments. These advancements hold the promise of significantly improving treatment outcomes while minimizing side effects in oral cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Haofu Tang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Deng X, Zhao R, Tang Y, Yi M, Wang D, Lin W, Wang G. FeS 2@COF based nanocarrier for photothermal-enhanced chemodynamic/thermodynamic tumor therapy and immunotherapy via reprograming tumor-associated macrophages. J Nanobiotechnology 2024; 22:711. [PMID: 39543651 PMCID: PMC11566302 DOI: 10.1186/s12951-024-02992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Developing high-performance nanomedicines to enhance antitumor efficacy remains a hot point in the field of biomedicine. In this study, we designed a versatile nanocomposite (FeS₂@COF-HA/AIPH) integrating covalent organic frameworks (COF) functionalized with pyrite (FeS₂) for synergistic photothermal (PTT), chemodynamic (CDT), thermodynamic (TDT) therapies, and immunotherapy. The superior photothermal effects and catalytic capabilities of FeS₂@COF enabled a minimally invasive PTT/CDT combination. The nanoplatform, with its mesoporous structure, also served as a drug delivery system, encapsulating the thermos-decomposable initiator AIPH. The hyaluronic acid (HA) coating not only improved tumor-targeting efficiency but also prevented nonspecific AIPH release. Under near-infrared (NIR) irradiation, the localized hyperthermia triggered AIPH decomposition, generating toxic alkyl radicals (•R) for TDT, further enhancing CDT efficiency. The combination of PTT, CDT, TDT, and immunotherapy led to potent antitumor effects with minimal systemic toxicity, both in vitro and in vivo. Notably, the nanoplatform effectively reprogrammed tumor-associated macrophages (TAMs) from an M2 to M1 phenotype, boosting antitumor immunity. This multifunctional platform thus offers a promising strategy for integrated PTT, CDT, TDT, and immune activation in tumor therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - YunFeng Tang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Yi
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Wang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Zhang Q, Li E, Zhang Y, Chen Y, Wang D, Wang S. Aggregation-Induced Emission-Active Organic Nanoagent with High Photothermal Conversion Efficiency for Near-Infrared Imaging-Guided Tumor Photothermal Therapy. ACS Biomater Sci Eng 2024; 10:6210-6217. [PMID: 39253844 DOI: 10.1021/acsbiomaterials.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Photothermal therapy (PTT) provides a great prospect for noninvasive cancer therapy. However, it is still highly challenging to construct photothermal agents (PTAs) with the desired performances for imaging-guided PTT applications. Herein, a D-A-D-type naphthalene diamine (NDI)-based photothermal nano-PTAs NDS-BPN NP with near-infrared region (NIR) emission at 822 nm, aggregation-induced emission (AIE), high photothermal conversion efficiency (55.05%), and excellent photothermal stability is successfully designed and prepared through a simple two-step engineering method by using a new AIE molecule NDS-BPN and DSPE-PEG2000 as precursors. The prepared PTT nanoagents NDS-BPN NPs have been further applied for efficient photothermal ablation of cancer cells in vitro and also achieved the NIR fluorescent image-guided PTT tumor therapy in vivo with satisfactory results. We believe that this work provides an attractive NIR AIE NDI-based nano-PTA for the phototherapy of tumors as well as develops the construction strategy of NDI molecular-based photothermal nanoagents with desired performances for imaging-guided PTT.
Collapse
Affiliation(s)
- Qiang Zhang
- Anhui Province Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| | - Enqi Li
- Anhui Province Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| | - Youwei Zhang
- Anhui Province Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| | - Yunyan Chen
- Anhui Province Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| | - Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu 241002, P.R. China
| | - Shaozhen Wang
- Anhui Province Engineering Research Center for Dental Materials and Application, Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P.R. China
| |
Collapse
|
5
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Oroojalian F, Azizollahi F, Kesharwani P, Sahebkar A. Stimuli-responsive nanotheranostic systems conjugated with AIEgens for advanced cancer bio-imaging and treatment. J Control Release 2024; 373:766-802. [PMID: 39047871 DOI: 10.1016/j.jconrel.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon observed in various materials such as organic luminophores, carbon dots (CDs), organic-inorganic nanocomposites, fluorescent dye molecules, and nanoparticles (NPs). These AIE-active materials, or AIEgens, are ideal for balancing multifunctional phototheranostics and energy dissipation. AIE properties can manifest in organic fluorescent probes, rendering them effective for cancer treatment due to their ability to penetrate deeply and provide high therapeutic efficacy. This efficacy is attributed to their high photobleaching thresholds, ability to induce Stokes shifts, and capacity to activate fluorophores. Therefore, the development of innovative AIE-based materials for disease diagnosis and treatment, particularly for cancer, is both important and promising. Recent years have seen successful demonstrations of nanoparticles with AIE properties being used for photodynamic therapy (PDT) and multimodal imaging of tumor cells. These fluorophores have been shown to impact mitochondria and lysosomes, generate reactive oxygen species (ROS), activate the immune system, load and release drugs, and ultimately induce apoptosis in tumor cells. In this review, we examine previous studies on the manufacturing methods and effects of AIEgens on cancer cells, with a theranostic strategy of simultaneous treatment and imaging. We also investigate the factors affecting drug delivery on different cancer cells, including internal stimuli such as pH, ROS, enzymes, and external stimuli like near-infrared (NIR) light and ultrasound waves.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Azizollahi
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Jiang W, Lin L, Wu P, Lin H, Sui J. Near-Infrared-II Nanomaterials for Activatable Photodiagnosis and Phototherapy. Chemistry 2024; 30:e202400816. [PMID: 38613472 DOI: 10.1002/chem.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Near-Infrared-II (NIR-II) spans wavelengths between 1,000 to 1,700 nanometers, featuring deep tissue penetration and reduced tissue scattering and absorption characteristics, providing robust support for cancer treatment and tumor imaging research. This review explores the utilization of activatable NIR-II photodiagnosis and phototherapy based on tumor microenvironments (e. g., reactive oxygen species, pH, glutathione, hypoxia) and external stimulation (e. g., laser, ultrasound, photothermal) for precise tumor treatment and imaging. Special emphasis is placed on the advancements and advantages of activatable NIR-II nanomedicines in novel therapeutic modalities like photodynamic therapy, photothermal therapy, and photoacoustic imaging. This encompasses achieving deep tumor penetration, real-time monitoring of the treatment process, and obtaining high-resolution, high signal-to-noise ratio images even at low material concentrations. Lastly, from a clinical perspective, the challenges faced by activatable NIR-II phototherapy are discussed, alongside potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Wanying Jiang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Lisheng Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Ping Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hongxin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Jian Sui
- Shengli Clinical Medical College of Fujian Medical University, Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
| |
Collapse
|
8
|
Zhang B, Huang Y, Huang Y. Advances in Nanodynamic Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:648. [PMID: 38607182 PMCID: PMC11013863 DOI: 10.3390/nano14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential. This review covers the research progress in five major nanodynamic therapies: photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy, such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly addresses challenges in the clinical translation of NDT.
Collapse
Affiliation(s)
| | | | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (B.Z.); (Y.H.)
| |
Collapse
|
9
|
Gao J, Yuan L, Min Y, Yu B, Cong H, Shen Y. D-A-D organic fluorescent probes for NIR-II fluorescence imaging and efficient photothermal therapy of breast cancer. Biomater Sci 2024; 12:1320-1331. [PMID: 38273769 DOI: 10.1039/d3bm01604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Near-infrared second region (NIR-II) fluorescent probes are used in the diagnosis of early cancer due to their high tissue penetration. However, there are still few reports on organic small molecule fluorescent probes with NIR-II fluorescence imaging (NIR-II FI) combined with efficient photothermal therapy (PTT). In this study, planar cyclopentadithiophene (CPDT) was incorporated into the twisted structural skeleton (D-A-D), and the strong acceptor TTQ molecule (A) and the donor triphenylamine (D) were introduced to synthesize an organic small molecule (TCT) with enhanced NIR-II fluorescence emission performance. To improve the hydrophilicity of TCT molecules, we used the nanoprecipitation method to coat DSPE-mPEG2000 on the TCT molecules and obtained nanoparticles (TCT-NPs) with a strong absorption band, good water dispersibility, and NIR-II FI ability, which realized NIR-II FI-guided PTT for breast cancer tumors. Due to their effective near-infrared absorption, TCT-NPs exhibit high photothermal conversion efficiency (η = 40.1%) under 660 nm laser irradiation, making them a photothermal therapeutic agent with good performance. Therefore, TCT-NPs have the potential to diagnose, eliminate, and monitor the diffusion of cancer.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Lin Yuan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Yu Min
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
10
|
Wang L, Li N, Wang W, Mei A, Shao J, Wang W, Dong X. Benzobisthiadiazole-Based Small Molecular Near-Infrared-II Fluorophores: From Molecular Engineering to Nanophototheranostics. ACS NANO 2024; 18:4683-4703. [PMID: 38295152 DOI: 10.1021/acsnano.3c12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Organic fluorescent molecules with emission in the second near-infrared (NIR-II) biological window have aroused increasing investigation in cancer phototheranostics. Among these studies, Benzobisthiadiazole (BBT), with high electron affinity, is widely utilized as the electron acceptor in constructing donor-acceptor-donor (D-A-D) structured fluorophores with intensive near-infrared (NIR) absorption and NIR-II fluorescence. Until now, numerous BBT-based NIR-II dyes have been employed in tumor phototheranostics due to their exceptional structure tunability, biocompatibility, and photophysical properties. This review systematically overviews the research progress of BBT-based small molecular NIR-II dyes and focuses on molecule design and bioapplications. First, the molecular engineering strategies to fine-tune the photophysical properties in constructing the high-performance BBT-based NIR-II fluorophores are discussed in detail. Then, their biological applications in optical imaging and phototherapy are highlighted. Finally, the current challenges and future prospects of BBT-based NIR-II fluorescent dyes are also summarized. This review is believed to significantly promote the further progress of BBT-derived NIR-II fluorophores for cancer phototheranostics.
Collapse
Affiliation(s)
- Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Na Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Anqing Mei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physicals and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
11
|
Zhuang J, Ma Z, Li N, Chen H, Yang L, Lu Y, Guo K, Zhao N, Tang BZ. Molecular Engineering of Plasma Membrane and Mitochondria Dual-Targeted NIR-II AIE Photosensitizer Evoking Synergetic Pyroptosis and Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309488. [PMID: 37988801 DOI: 10.1002/adma.202309488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Phototherapy provides a noninvasive and spatiotemporal controllable paradigm to inhibit the evasion of the programmed cell death (PCD) of tumors. However, conventional photosensitizers (PSs) often induce a single PCD process, resulting in insufficient photodamage and severely impeding their application scopes. In this study, molecular engineering is conducted by adjusting electron donors to develop an aggregation-induced NIR-II emissive PS (DPITQ) for plasma membrane and mitochondria dual-targeted tumor therapy by evoking synergetic pyroptosis and apoptosis. DPITQ displays boosted type I and II reactive oxygen species generation as well as a high photothermal conversion efficacy (43%) after laser irradiation of 635 nm. The excellent biocompatibility and appropriate lipophilicity help the DPITQ to specifically anchor in the plasma membrane and mitochondria of cancer cells. Furthermore, the photosensitized DPITQ can disrupt the intact plasma membrane and cause mitochondrial dysfunction, ultimately causing concurrent pyroptosis and apoptosis to suppress cancer cell proliferation even under hypoxia. It is noteworthy that the DPITQ nanoparticles (NPs) present clear NIR-II fluorescence imaging capability on the venous vessels of nude mice. Notably, the DPITQ NPs exert efficient NIR-II fluorescence imaging-guided phototherapy both in multicellular tumor spheroids and in vivo, causing maximum destruction to tumors but minimum adverse effects to normal tissue.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhedong Ma
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Huan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lijin Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ying Lu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Keyi Guo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Na Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
12
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
13
|
Wang Q, Xia G, Li J, Yuan L, Yu S, Li D, Yang N, Fan Z, Li J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int J Mol Sci 2023; 24:16949. [PMID: 38069279 PMCID: PMC10707236 DOI: 10.3390/ijms242316949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tumors are a major public health issue of concern to humans, seriously threatening the safety of people's lives and property. With the increasing demand for early and accurate diagnosis and efficient treatment of tumors, noninvasive optical imaging (including fluorescence imaging and photoacoustic imaging) and tumor synergistic therapies (phototherapy synergistic with chemotherapy, phototherapy synergistic with immunotherapy, etc.) have received increasing attention. In particular, light in the near-infrared second region (NIR-II) has triggered great research interest due to its penetration depth, minimal tissue autofluorescence, and reduced tissue absorption and scattering. Nanomaterials with many advantages, such as high brightness, great photostability, tunable photophysical properties, and excellent biosafety offer unlimited possibilities and are being investigated for NIR-II tumor imaging-guided synergistic oncotherapy. In recent years, many researchers have tried various approaches to investigate nanomaterials, including gold nanomaterials, two-dimensional materials, metal sulfide oxides, polymers, carbon nanomaterials, NIR-II dyes, and other nanomaterials for tumor diagnostic and therapeutic integrated nanoplatform construction. In this paper, the application of multifunctional nanomaterials in tumor NIR-II imaging and collaborative therapy in the past three years is briefly reviewed, and the current research status is summarized and prospected, with a view to contributing to future tumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| |
Collapse
|